|GOR XOP
TOOLKIT

REFERENCE MANUAL

Copyright

This manual and the Igor XOP Toolkit are copyrighted by WaveMetrics with al rights reserved. Under
copyright lawsit isillegal for you to copy this manua or the software without written permission from
WaveMetrics.

WaveMetrics gives you permission to make unlimited copies of the software on any number of machines but
only for your own personal use. Y ou may not copy the software for any other reason. Y ou must ensure that
only one copy of the software isin use at any given time.

Warranty

WaveMetrics warrants to the registered owner that: 1) the disk on which the software is furnished will be free
from defects in material and workmanship under normal use for a period of ninety (90) days from the date of
delivery to you. 2) The software will be completely satisfactory to you within a period of ninety (90) days
from the date of delivery to you. WaveM etrics does not war rant, guar antee, or make any representations
regarding theuse or theresults of the use of the softwar e or any accompanying written materialsin
terms of their correctness, accuracy, reliability, currentnessor otherwise. The entirerisk asto the
results and performance of the software and written materialsis assumed by you. (Some states do not
allow the exclusion or limitation of implied warranties, so the above limitation or exclusion may not apply to
you).

WaveMetrics offers a 90 day money-back guarantee on products purchased directly from us. If you are not
satisfied with the product, please contact us. If we can’t satisfy you, we'll refund the purchase price, not
including shipping. This guarantee is also available through cooperating vendors. If you did not purchase the
product directly from WaveMetrics, contact your vendor for instructions.

Updates

WaveMetrics intends to offer periodic updates of the software to you at a reasonable price based on the new
functionality added by the updates.

Please return the registration card to us so that we can let you know about updates.

If there are features that you would like to see in subsequent versions of the XOP Toolkit or if you find bugs
in the current version, please let us know. We're committed to providing you with a product that does the job
reliably and conveniently.

Notice

Appleisaregistered service mark of Apple Computer, Inc. Macintosh, LaserWriter, and QuickDraw are
registered trademarks of Apple Computer, Inc. Microsoft, Windows, and Visual C++ are registered
trademarks of the Microsoft Corporation. CodeWarrior is a registered trademark of Metrowerks, Inc.

Manual Revision: 7/2005 (5.04)

© Copyright 1994-2005 WaveMetrics Inc. All rights reserved. Printed in the United States of America.
WaveMetrics, Inc.

PO Box 2088

Lake Oswego, OR 97035

Voice: (503) 620-3001

FAX: (503) 620-6754

Email: sales@wavemetrics.com, support@wavemetrics.com

Web: WWww.wavemetrics.com

Table of Contents

INErOdUCEION 10 XOPS.......ccuiiiieieciiesieee et sne e 1
(€110 (=0 B 1o U USSR 27
Devel OpmENt SYSLEMS......ccoiieicie e 63
[QOI/ X OP INtEraCtiONS.....cueeieeeeeite e ee et ee et ne e 103
AddiNg OPEralioNS.......cceiuereerieeeseeseesee e sesse e se e e e e sreeseesreesseeneens 143
AddiNG FUNCLIONS........coiiiiiiiiieeeeee e 179
ACCESSING 1G0T DELA.......covieieiieirieeieeee e 205
Adding Menus and Menu [TEMS.........cccoviiinieneneee e 229
AddiNg WINAOWS........coiuieiicieceeie ettt et 247
Other Programming TOPICS......cccueeveieeiieeieieeseesie e sreesreeae s e e eee e 259
Providing HEIP ..ot 289
D= 18T 01 0o FHRR R ROROSR SR UTP PR 301
XOPSUPPOIt ROULINES.......cvoiviiirieniieieeeeie e nnen 323
Appendix A: XOP Toolkit 5 Upgrade NOtes..........ccceevineererinseenennne 505
Appendix B: Porting Macintosh XOPsto Carbon...........cccccovevevieieennn, 519
Appendix C: XOP Toolkit 5 Revision HIiStOrycccceeveeereeieseeseennnns 539

Introduction to XOPs

What 1SAN XOP? ...ttt 3
WhOo Can Write @n XOP?........o ettt s nee e 4
A Brief HiStory Of 1gOF......ccoiiiicecce ettt e 4
XOP TOOIKIT S ..ottt 5
Macintosh and Windows XOPSccooiiiieee e 6
Macintosh CFM Versus Mach-O ..o 6
XOP NamMe CONVENTIONScoueiiieieieiniesie et se e seesnes 7
Devel OPMENT SYSIEIMS......c.oiiiiiierieee e 8
The Igor Extensions Folder On Macintoshccceoeieieienieneneneneeeeeee 9
Installing the XOP TOOIKItccceiiiiee et 10
Testing the Macintosh INStallation...........cccocveiiieneieieeeeee e 11
Testing the Windows INStallationcccooeviiinenereiseese e 12
XOP TOOIKIt OVEINVIEW ...t 13
The XOPSUPPOIt FOIAENccv e 13
SaMPIE XOP FOIUEIS.....c..oiiiieeiceeeee st 15
D ST o] o R 16
The SAMPIE X OPS......c.oo et s 17
D | R 17
XIFUNCL.... ettt sttt nae e e e e e enennannen 17
XIFUNGCZ....cco ettt sttt s neenennen 17
D 1 L 20 S 17
WINAOWXOPL.......ociiiiieiieieie et se e ne e eseeseneesnas 17
MENUXOPL ...ttt sttt neene e neas 18
SIMPIELOAOWAVE. ..ottt e 18
GBLOBAWEAVEeeeeeee sttt sttt s ste e naesreeneens 18
SIMPIEFIL ... ettt sre e 18
WWAVEACCESS. ...ttt sttt ettt sttt st st b e she et bt sne e e e 19
TUDEIMO ..ottt ettt e st e e sab e e s beeesbe e s snreeeneeanns 19

Chapter 1 — Introduction to XOPs

NIGPIB2 ...ttt sttt st sae e eneens 19
HOW 1gOr INtEgrales XOPS........oiiiiee ettt see et st 20
The Basic Structure 0f an XOPccceirininineieee s 22
Preparing to WIit€ an XOP ... 24
TeChNiCal SUPPOIT........eeieieeee ettt 26

[IS o oo P 26

FTP SUPPOIT.....eciteeeete ettt s 26

Lo o g1V =TT T e N 26

WOrld-Wide WED...........oo e 26

TelEPNONE SUPPOIT.....cceeecieceee e 26

Chapter 1 — Introduction to XOPs

About This Manual

If you are new to XOP programming, we recommend that you start by reading the first four
chapters of this manual. Chapter 2 isa Guided Tour. Chapter 3 deals with several development
systems. Y ou need to read only the section that pertains you your development system. After
reading these chapters, you can select which of the remaining chapters you need to read
depending on what your XOP is required to do.

If you have used previous versions of the XOP Toolkit, we recommend that you read this chapter
and then Appendix A, which describes changesin XOP Toolkit 5. As explained in Appendix A,
we recommend that you leave your existing XOP project folders as they are and create new
copies of these folders for further development using XOP Toolkit 5.

If you want to port an existing Macintosh X OP that was written to run with the pre-Carbon
version of Igor Pro, read Appendix B.

Appendix C describes changesto XOP Toolkit 5 since release 5.00.

What is an XOP?

An XOPisarelatively small piece of code that extends Igor Pro.

XOPs can be very simple or quite elaborate. A simple XOP might, for example, add one
operation to Igor that applies a transformation to awave. An elaborate XOP can add multiple
operations, functions, menu items, dialogs and windows. It is even possible to build a data
acquisition and analysis system on top of Igor.

“XOP” literally means “external operation”. Originally X OPs were intended only to allow adding
operationsto Igor. Now an X OP can add much more so “XOP” has the meaning “externa
modul e that extends Igor”.

Igor has two types of built-in routines: operations and functions. An operation (e.g., Display) has
an effect but no direct return value. A function (e.g., sin) has adirect return value and, usualy, no
side effects. An XOP can add operations and/or functions to Igor Pro.

To create an XOP, you start with sample X OP source code supplied by WaveMetrics. After
modifying the sample, you compileit to produce the executable X OP.

An XOP contains executable code, required resources, and optional resources. The required
resources tell 1gor what operations and functions the X OP adds. The optional resources contain
things such as menu items, menus, error messages, windows, and dialogs.

Chapter 1 — Introduction to XOPs

When Igor Pro starts up, it looks for XOPs, as well as aliases or shortcuts that point to XOPs, in
the Igor Extensions folder. For each XOP that it finds, it adds the operations, functions and menu
items specified by the XOP' s resources. When the user accesses an operation, function or menu
item added by the X OP, Igor then communicates with the XOP using a simple protocol. The XOP
can access lgor data and functions using a set of routines, called X OPSupport routines, provided
with the XOP Toolkit.

Who Can Write an XOP?

In order to write an XOP you need to be very familiar with Igor. Y ou should be very comfortable
with the concepts of waves, command line operations, procedures and experiments.

To write asimple XOP you need to be comfortable with the language and devel opment system
that you are using. Y ou will need to study and understand the simple sample X OPs supplied by
WaveMetrics and the parts of this manual that apply to simple X OPs.

To write an elaborate XOP you a so need to be an experienced programmer. Y ou should start by
writing asimple XOP. Y ou will need to study and understand all of this manual.

A Brief History of Igor

Igor 1.0 was introduced in January of 1989 and ran on Macintosh computers which, at that time,
used Motorola 680x0 processors (68K). Thisversion of Igor did not support XOPs.

WaveMetrics released Igor 1.1 in March of 1989. Igor 1.1 supported external operations but not
external functions. The first XOP Toolkit was also released at thistime and supported
development under MPW (Macintosh Programmer's Workshop) and Symantec THINK C. Igor
1.2 shipped in May of 1990 and also supported external operations but not external functions.

In March of 1994, WaveMetrics released Igor Pro 2.0, amajor new version of Igor. Thisversion
added notebooks, control panels, drawing tools, and many other features, including external
functions. Shortly thereafter, WaveMetrics released X OP Toolkit 2.0, which supported XOP
development under MPW and THINK C.

In May of 1995, WaveMetrics released Igor Pro 2.02, the first version optimized for Power
Macintosh and its PowerPC processor (PPC). A version of the XOP Toolkit was released which
supported development of PowerPC X OPs using MPW or the CodeWarrior development system
from Metrowerks.

Chapter 1 — Introduction to XOPs

In February of 1996, WaveMetrics released Igor Pro 3.0. This version added multi-dimensional
waves, text waves and data folders. XOP Toolkit 3.0 supported 68K and PPC development using
MPW, THINK C, and CodeWarrior.

In November of 1997, WaveMetrics released Igor Pro 3.1. The main new thing in thisversion is
that it ran under Windows 95 and Window NT 4.0 on Intel x86 processors as well as on
Macintosh. XOP Toolkit 3.1 was released which supported development using CodeWarrior for
68K, PPC, and x86 development or Microsoft Visual C++ 5 for x86 development. Support for
MPW and THINK C was dropped.

In September of 2000, WaveMetrics released Igor Pro 4.0. No new version of the XOP Toolkit
was released.

In February of 2002, WaveMetrics released Igor Pro 4.05. Thisrelease included the Igor Pro
Carbon application, the first version to run native on Mac OS X. It was based on Apple’ s Carbon
API which supports software running on both Mac OS 9 and Mac OS X. Igor Pro 4.05 also
included the pre-Carbon version of the application which ran on Mac OS 9 only.

In order to run native under Mac OS X, XOPs had to be revised to run under the Carbon API. In
September of 2001, during the beta testing of Igor Pro Carbon, WaveMetrics released a Carbon
XOP Toolkit which was shipped as part of XOP Toolkit 3.12.

In November of 2003, WaveMetrics shipped Igor Pro 5.0. For Macintosh, this release included
just the Carbon version of Igor, not the pre-Carbon version. This means that any Macintosh XOP
that isto run with Igor Pro 5 must be revised to use Apple’ s Carbon API. The Windows version
of Igor Pro 5.0 requires Windows 98, Windows ME, Windows 2000 or Windows XP and does
not run under Windows 95 or Windows NT.

From the X OP point of view, the magjor addition in Igor Pro 5 is afeature called “ Operation
Handler” — code within Igor that simplifies the implementation of external operations and makes
it possible to call them directly from an Igor Pro user function.

In January of 2004, WaveMetrics released XOP Toolkit 5.

XOP Toolkit 5

On Macintosh, XOP Toolkit 5 supports development of XOPs for Igor Pro 4 Carbon or Igor Pro
5. It does not support development for pre-Carbon versions of Igor. The supported development
systems are Metrowerks' CodeWarrior Pro 8.3 and Apple’ s Xcode. The supported operating
systems are Mac OS 9.1 or later or Mac OS X 10.2 or later.

Chapter 1 — Introduction to XOPs

On Windows, XOP Toolkit 5 supports development of XOPs for Igor Pro 4 or later. The
supported development systems are Microsoft Visual C++ 6 and Microsoft Visual C++ 7 (better
known as Visual C++ .NET). The supported operating systems are Windows 98, Windows ME,
Windows 2000 and Windows XP.

The current version of Igor Pro is5.00. It is possible to write X OPs that support older versions,
but this adds complexity and requires additional testing. WaveM etrics recommends that you write
your XOP for Igor Pro 5 only, if at all possible. If you have previously written an XOP that is
used with Igor Pro 4, the recommended approach is to freeze the Igor Pro 4 version of your XOP
and target new development for Igor Pro 5.

If you want to support only Igor Pro 5 then you can use any of the features and routines described
in thismanual. If you want to support earlier versions of Igor then you must check which version
of Igor isrunning and restrict yourself to using only those features and routines that the running
Igor supports. The section Igor/XOP Compatibility Issues on page 140 explains how you can
check this.

If you have written XOPs with earlier versions of the X OP Toolkit, see XOP Toolkit 5 Upgrade
Notes on page 505.

If you want to update an existing Macintosh X OP that was written to run with the pre-Carbon
version of Igor Pro, read Porting Macintosh XOPs to Carbon on page 519.

Macintosh and Windows XOPs
XOP Toolkit 5 supports development of Macintosh Carbon XOPs and Windows x86 X OPs.

Some XOPs, by their nature, are processor- and platform-independent. For example, the code for
anumber-crunching XOP will be nearly identical on all platforms. XOPs that have a user
interface (menus, dialogs, windows) or deal with files are partially platform-dependent. However,
the XOP Toolkit provides routines for dealing with menus, dialogs, windows and files. Using
these routines, it is possible to write most XOPsin a mostly platform-independent way.

On Windows, the XOP Toolkit provides a bit of Macintosh emulation, mostly in the areas of
memory management and menu handling. This emulation permits Windows X OPs to mesh with
Igor and a so makes writing XOPs more platform-independent.

Macintosh CFM Versus Mach-O

On Mac OS X there are two binary formats for executable files: CFM (Code Fragment Manager)
and Mach-O. CFM (aso called PEF) isthe original executable format for Power Macintosh.

Chapter 1 — Introduction to XOPs

Mach-O comes from the Unix underpinnings of Mac OS X. CFM executables can run on Mac OS
9 or Mac OS X. Mach-O executables run on Mac OS X only.

This table summarizes the features of the CFM and Mach-O binary executable formats.

Format Develop With | RunsOn Packaging Notes
CFM CodeWarrior Mac OS9or | XOPispackaged asa Required if XOPisto
Mac OS X singlefile. run on Mac OS 9.
Mach-O | CodeWarrior or | Mac OS X XOPis packaged in a Recommended for use
Xcode folder as a“packaged with Mach-O libraries
bundle”. or frameworks.

The Igor Pro application itself uses the CFM format. Prior to Igor Pro 5, XOPs aso had to use the
CFM format because that is what Igor understood. With Igor Pro 5, it is possible to create a
Mach-O XOP for use on Mac OS X. Mach-O XOPs can not run on Mac OS 9.

There are two main reasons why you might want to create a Mach-O XOP instead of using CFM.
First, Apple's Xcode development system can not create CFM executables. This means that you
must use CodeWarrior to create CFM XOPs. CodeWarrior is a good development system but if
you are a casua programmer you might prefer to use the free X code system.

The other reason for creating a Mach-O XOP isif you need to use aMach-O library or
framework, such asaMac OS X device driver. While there are methods for calling Mach-O
libraries or frameworks from CFM executables, in most cases these methods are unacceptably
tedious.

A Mach-O XOP is created as a " packaged bundle’. “Bundle’ is Apple'sterm for a plug-in type of
executable. A “package’ isafolder containing a particular hierarchy of subfolders and files.
Although it isafolder, the Finder normally displays a package to make it look like afile. The
details of XOP packaged bundles are explained in Chapter 3.

XOP Name Conventions

Executable X OP files should have the file name extension “.xop”. Thisis required on Windows.
For Macintosh CFM XOPs, it is optional but is recommended.

Macintosh Mach-O X OP packaged bundles must include “.xop” at the end of the package
folder’ s name. The executable X OP file inside the package must not use the “.xop” extension.

Chapter 1 — Introduction to XOPs

Development Systems
Thistable lists the devel opment systems supported by XOP Toolkit 5.

Development System

Operating System

Notes

Earlier versions of CodeWarrior do not

CodeWarrior Pro 8.3 Mac OS 9 or Mac OS X work correctly on Mac OS X.
Xcodeis supplied with Apple’'s Mac OS
Xcode 1.1 Mac OS X only X developer tools. It requires Mac OS X
10.3 or later.
VISJaI C++ 6 n 1 H n 1} T
Windows The"standard" (i.e., "cheaper") version of

Visual C++ 7 (.NET)

Visual C++ isfinefor XOP programming.

Details on using each development system are provided in Chapter 3.

If you are an experienced programmer, you may be able to port the samples and the X OPSupport
library to other development systems. Y ou will need to read Chapter 3 to understand how XOP

projects are constructed.

As new development system versions are released, WaveMetrics creates updated XOP Toolkit
files and makes them available via anonymous FTP. For alist of WaveMetrics FTP sites, please

seel

http://www.wavemetrics.com/support/ftpinfo.html

Most of the sample XOPs are in written in C. Many X OPs have been written in C++ also.

Chapter 1 — Introduction to XOPs

The Igor Extensions Folder On Macintosh

Prior to Igor Pro 4.05, there was just one Macintosh version of Igor Pro. Active XOPs were stored
in the “Igor Extensions’ folder, inside the “Igor Pro Folder”:
Igor Pro Folder

Igor Extensions Il < Active extensions stored here.

Starting with Igor Pro 4.05, the Macintosh version of Igor included both a Carbon version and a
pre-Carbon version. The Carbon Igor application file was named “Igor Pro Carbon™ while the
pre-Carbon application file was named “Igor Pro”. Since X OPs needed to be ported to Carbon to
work with Igor Pro Carbon, WaveMetrics had to ship two sets of XOPs. Consequently the folder
hierarchy was extended, like this:

Igor Pro Folder

Igor Extensions Il < Active pre-Carbon extensions stored here.
Carbon Extensions and Support
Igor Extensions Il < Active Carbon extensions stored here.

S0, active extensions were always stored in “lgor Extensions’, but Carbon active extensions were
stored in adifferent “Igor Extensions’ folder, nested inside the “ Carbon Extensions and Support”
folder.

Asof Igor Pro 5, thereisjust one version of Igor on Macintosh again — the Carbon version. So
there is no need for two Igor Extensions folders. Consequently, Igor Pro 5 uses the original
organization:
Igor Pro Folder
Igor Extensions /I < Active Carbon extensions stored here.

NOTE: When thismanua refersto the Igor Extensions folder, it means the the folder
containing active Carbon extensions. If you are running Igor Pro 5, thisis“Igor Pro
Folder:lgor Extensions” but if you are running Igor Pro 4, it is“Igor Pro Folder:Carbon
Extensions and Support:lgor Extensions”.

10

Chapter 1 — Introduction to XOPs

Installing the XOP Toolkit

The XOP Toolkit is delivered either via electronic download or on CD-ROM. In either case, you
receive afile named X OPToolkit5.sit (Macintosh) or XOPToolkit5.exe (Windows).

Toinstal on Macintosh, unstuff the XOPToolkit5.sit file, storing the resulting “XOP Toolkit 5”
folder anywhere on your hard disk.

Toinstal on Windows, double-click the XOPToolkit5.exe file, storing the resulting “XOP
Toolkit 5” folder anywhere on your hard disk.

All of the sample XOPs, the XOPSupport library and other support files are stored in a folder
named 1gorX OPs5 inside the “XOP Toolkit 5” folder.

Chapter 1 — Introduction to XOPs

Testing the Macintosh Installation
If you are using CodeWarrior Pro:

In the Finder, open the IgorX OPs5: X FUNC1:CW8 folder.
Double-click the XFUNC1.mcp project file. CodeWarrior Pro should open the project.

Choose Make from the CodeWarrior Project menu. This creates the XFUNC1.xop filein the
IgorXOPs5: X FUNC1:CW8 folder. Don’'t worry if you got some warnings from the compiler
during the build.

Make an alias from the XFUNC1.xop file and drag the alias into your Igor Extensions folder.
Launch Igor Pro.
Execute the following command:
Print XFUNC1Add(3,4)
7. lgor should print "7" in the history area.

8. If Igor displayed an error message, you may have multiple versions of Igor on your machine.
Double-check that you put the alias for the XFUNC1.xop file in the correct Igor Extensions
folder. Also see Thelgor Extensions Folder On Macintosh on page 9.

If you are using Xcode:

In the Finder, open the IgorX OPs5: X FUNC1: X code folder.
Double-click the XFUNC1.xcode project package. Xcode should open the project.

Choose Build from the Xcode Build menu. This creates the XFUNC1.xop package in the
IgorXOPs5: X FUNC1: X code:build folder. Don’t worry if you got some warnings from the
compiler during the build.

4. Make an dlias from the XFUNC1.xop package and drag the alias into your Igor Extensions
folder.

4. Launch Igor Pro.
Execute the following command:
Print XFUNC1Add(3,4)
Igor should print "7" in the history area.

If Igor displayed an error message, you may have multiple versions of Igor on your machine.
Double-check that you put the alias for the XFUNC1.xop file in the correct Igor Extensions
folder. Also see The Igor Extensions Folder On Macintosh on page 9.

12

Chapter 1 — Introduction to XOPs

Testing the Windows Installation
If you areusing Visual C++ 6:

In the Windows desktop, open the IgorX OPs5S\X FUNC1\V C6 folder.
Double-click the XFUNC1.dsw file. Visual C++ 6 should open the project.

Choose Build XFUNC1.xop from the Build menu. This creates the XFUNCL1.xop filein the
IgorX OPsS\X FUNC1\V C6 folder. Don’t worry if you got some warnings from the compiler
during the build.

4. Make ashortcut from the XFUNC1.xop file and drag the shortcut into your Igor Extensions
folder.

Launch Igor Pro.

Execute the following command:
Print XFUNC1Add(3,4)

Igor should print "7" in the history area.

If Igor displayed an error message, you may have multiple versions of Igor on your machine.
Double-check that you put the shortcut for the XFUNC1.xop file in the Igor Extensions
folder.

If you areusing Visual C++ 7 (NET):

In the Windows desktop, open the IgorX OPs5\ X FUNC1\V C7 folder.
2. Double-click the XFUNC1.dlnfile. Visual C++ 7 (.NET) should open the project.

3. Choose Build XFUNC1 from the Build menu. This creates the XFUNC1.xop file in the
IgorX OPs5\X FUNC1\V C7 folder. Don’t worry if you got some warnings from the compiler
during the build.

4. Make ashortcut from the XFUNC1.xop file and drag the shortcut into your Igor Extensions
folder.

Launch Igor Pro.

Execute the following command:
Print XFUNC1Add(3,4)

Igor should print "7" in the history area.

If 1gor displayed an error message, you may have multiple versions of Igor on your machine.
Double-check that you put the shortcut for the XFUNC1.xop file in the Igor Extensions
folder.

Chapter 1 — Introduction to XOPs

XOP Toolkit Overview

The XOP Toolkit includes a number of files that you will need to implement your XOP. Thefiles
are organized into folders all of which arein the IgorX OPs5 folder.

The 1gorXOPs5 folder contains one folder for each of the sample XOPs, and an additional folder
for the X OPSupport files, which are used by all XOPs.

The XOPSupport Folder

This XOPSupport folder contains

» Compiled XOPSupport libraries for al of the supported development systems.
» The C files and headers used to make those libraries.

» For Windows, the IGOR.lib file.

» Some miscellaneous files.

The main files of interest are listed in the following table. Y our interaction with them will be
mostly through including the X OPStandardHeaders.h file, linking with the library files, and
calling the XOPSupport routines defined in the libraries. These routines are described in detail in
Chapter 13.

13

14

Chapter 1 — Introduction to XOPs

File What It Contains

XOPSupport.c Utility and callback routines for communication with Igor.

XOPWaveAccess.c Utility and callback routines for dealing with waves.

XOPStandardHeaders.h Includes ANSI-C headers, Macintosh or Windows headers, and
XOP headers. All XOP C files need to include thisfile.

XOPSupport.h Declarations and prototypes for all XOPSupport routines. Thisfile
isincluded in XOPStandardHeaders.h.

XOP.h #defines, data structures and global variable declarations used as
part of the Igor/X OP communication protocol. Thisfileis
included in X OPStandardHeaders.h.

IgorXOP.h #defines for Igor error messages, menu items, number type codes,
and other items culled from Igor's own source code. Thisfileis
included in X OPStandardHeaders.h.

:CW8: The CodeWarrior XOPSupport library for CFM XOPs (Mac OS 9

XOPSupport CFM.Lib or Mac OS X).

:CW8: The CodeWarrior XOPSupport library for Mach-O XOPs (Mac

XOPSupport Mach.Lib OS X).

:Xcode: The Xcode XOPSupport library for Mac OS X XOPs.

libX OPSupport.a

\VC6\ The Visual C++ 6 XOPSupport library for Windows X OPs.

XOPSupport.lib

\VC?\
XOPSupport.lib

IGOR.lib

The Visua C++ 7 (.NET) XOPSupport library for Windows
XOPs.

Allows a Windows XOP to call certain routinesthat are
implemented in the Igor.exe file on Windows.

In addition, the XOPSupport folder contains various header files and C files that deal with data
folders, numeric conversions, menus, dialogs, windows, FIFOs, and file I/O.

Chapter 1 — Introduction to XOPs

Sample XOP Folders

Each sample XOP folder containsfiles that are used by all development systems and files that are
devel opment-system-specific. The devel opment-system-specific files are grouped in their own
folders. For example, hereisaview of the XFUNCL1 folder (simplified for clarity):

ey n XFUNC1 =

v [F ows
& xruncl.mep
{E] XFUNC1.x0p

v [J vce
XFUNC1.dsw

{i2] XFUNC1.x0p

Y & VC7
" XFUNC1.sin
{E£] xFUNC1.xo0p
| ¥ L& Xcode
¥ | build

XFUNC1.x0p
™ XFUNC1.xcode
XFUNC1 Help.ihf
XFUNC1.c
XFUNC1.h

XFUNCL.r
XFUNCL.rc
XFUNC1WinCustom.rc

——3
Each sample XOP folder contains:

File Example

A Cfile containing the C code for the XOP. XFUNCl.c
A header file containing #defines and other declarations. XFUNCL1.h

A resource file containing atext description of the XOP's ~ XFUNCL.r (Macintosh) or
resources. XFUNCL.rc (Windows)

A "custom” resource file containing a text description of XFUNC1WinCustom.rc
XOP-specific resources (Windows only)

A resource header file containing definesused inthemain ~ resource.h
resource file (Windows only)

A helpfile. Thisisan Igor Pro notebook that has been XFUNCL1 Help.ihf
formatted and opened in Igor Pro as a help file.

16

Chapter 1 — Introduction to XOPs

File Example

A “project”, “workspace” or “solution” file. XFUNC1.mcp (CodeWarrior),
XFUNCL1.xcode (Xcode),
XFUNCL1.dsw (Visua C++ 6),
XFUNC1.dn (Visuad C++ 7)

Although the terminology depends on the devel opment
system, you can think of all of these as “project” files.

When you compile an XOP, the compiler generates executable code from the C file. It then
creates resources from the resource file. It writes the executable code and resources to the output
executable XOP file (or to the package in the case of Mac OS X Mach-O XOPs). The projects are
configured to store the compiled XOP in the project-specific folder (CW8, Xcode, VC6 or VC7).

XOPSupport

The XOPSupport folder contains the source code for the heart of the XOP Toolkit. These routines
are used by all XOPs and are described in detail in Chapter 13. Most XOPs will use just a small
fraction of the available routines. The routines are made available to the XOP by including
XOPStandardHeaders.h and by linking with the XOPSupport library. The name of the
XOPSupport library depends on which development system you are using.

Callbacks are routines that request services from Igor. There are callbacks for creating and
mani pul ating waves and variables and for many other purposes.

Utilities are routines that provide useful services without calling Igor. There are utilities for
handling dialogs, menus, resources, files and other things.

Whether a particular XOPSupport routineis a callback or a utility is usually of no consequence to
the XOP programmer.

Most callback routines are defined in the X OPSupport C files. They transmit parameters from the
XOP to Igor and results from Igor back to the XOP. On Windows only, some callback routines
call Igor directly. These routines are made available to the XOP by linking with IGOR.lib. The
callbacks that go directly to Igor have to do with Windows-specific functions (e.g.,
SendWinMessageTolgor) or with Macintosh emulation (e.g., NewHandle). Whether a particular
callback goes through X OPSupport or goes directly to Igor is usually of no consequence to the
XOP programmer.

Chapter 1 — Introduction to XOPs

The Sample XOPs

XOP1

XOP1 isthe archetypal XOP. It adds a single operation to Igor. The name of the operation is also
XOPL1. The XOP1 operation expects the name of a single wave. It adds the number 1 to each
point in the wave. The wave must be either single or double-precision floating point.

XOPlisagood starting point for very simple XOPs that add command line operations to Igor.

Y ou should read XOP1.cinitsentirety. It is very short — less than three pages. It illustrates the
structure used by all XOPs.

XFUNC1

XFUNCL isasimple example of adding numeric functionsto Igor Pro. It adds the
XFUNC1Add(n1,n2) and XFUNC1Div(n1,n2) functions.

XFUNCL1 isagood starting point for ssmple XOPs that add numeric functionsto Igor Pro.

XFUNC2

XFUNC2 is amore complex example of adding numeric functions to Igor Pro. It adds the
logfit(w,x) and plgndr(l,m,x) functions.

logfit isafunction that can be used for curve fitting. It also illustrates passing awave to an
external function.

plgndr computes L egendre polynomials.

XFUNC3

XFUNC3 isasimple example of adding string functionsto Igor Pro. It adds the xstrcatO(s1, s2)
and xstreat1(sl, s2) functions.

XFUNCS illustrates receiving string parameters from Igor and returning string results.

WindowXOP1

WindowXOP1 is asimple XOP which adds awindow to Igor. WindowX OP1 adds a menu item
to Igor’s Misc menu. When you select that menu item it displays its window. WindowXOP1
shows how you can open, close, activate and update a window and how you respond to a variety
of window events.

17

18

Chapter 1 — Introduction to XOPs

MenuXOP1

MenuXOP1 isasimple XOP that illustrates the various ways that an XOP can add menus and
menu itemsto Igor. It adds its own menu to Igor’s main menu bar. This menu contains several
submenus. It also adds a menu item to the Misc menu and a menu item with a submenu to the
Analysis menu. MenuX OP1 al so adds command line operations for enabling and disabling menu
items and showing and hiding menusto illustrate how thisis done. These operations are
documented in the MenuXOP1.c file.

SimpleLoadWave

SimpleLoadWaveis asimplefile loader. It |oads data from tab-delimited text filesinto Igor
waves and is agood starting point for XOPs that import data into Igor. It adds one menu item and
one operation to Igor. The menu item, Load Simple Delimited File, appearsin Igor’s Load Waves
submenu. When the menu item is chosen, the Simplel oadWave X OP puts up an open file dialog
allowing the user to select aplain text file to open. Then SimpleL oadWave opensthefile, creates
Igor waves and fills the waves with values from the text file. The XOP also adds the

SimpleL oadWave operation to Igor. The user can invoke this operation from Igor’s command line
or from an Igor procedure to load tab-delimited text files.

SimpleLoadWave uses the file I/O routines provided by the XOPSupport library to achieve
platform-independence.

GBLoadWave

GBLoadWave loads general binary filesinto Igor waves. It adds a menu item, Load General
Binary File, to Igor’s Load Waves submenu. When the user chooses Load General Binary File,
the GBLoadWave X OP puts up a standard Igor-style dialog which alows the user to compose a
GBLoadWave command. The GBL oadWave command, when executed, creates |gor waves and
fills the waves with values from the selected genera binary file.

GBLoadWave is capable of reading file data of any Igor numeric type (single and double-
precision floating point; 8, 16 and 32 bit signed integer; 8, 16 and 32 hit unsigned integer) and of
creating waves of any type.

GBLoadWave isagood starting point for XOPs that import binary datato Igor. It also provides a
good example of creating an Igor-style dialog in amostly platform-independent way.

SimpleFit

SimpleFit adds a simple curve-fitting function that fits to a polynomial. The Guided Tour chapter
of this manual shows how to compile SimpleFit and how to change it to fit a different function.

Chapter 1 — Introduction to XOPs

WaveAccess

WaveAccess illustrates three methods of accessing numeric wave data. One of the methodsis
optimized for speed but requires that you treat each numeric type separately. The other two
methods are very easy to use with any numeric type and provide sufficient speed for most
applications. WaveA ccess also illustrates accessing Igor Pro text waves.

TUDemo

TUDemo creates a simple text window in which the user can edit text. It illustrates the XOP
Toolkit TU (“text utility”) routines which make it easy to implement such awindow. Y our XOP
could use atext window to get input from the user or to display status or results.

VDT2 (“*Very Dumb Terminal”)

VDT2 isan elaborate X OP that adds a dumb terminal emulator and command line operations for
seria 1/0 to Igor aswell as a submenu in Igor's Misc menu, adialog and a window.

VDT2 isthe successor to the old VDT XOP. The main differenceisthat VDT2 usesigor Pro5's
“Operation Handler” feature so that its operations can be called from user functions as well as
from macros. Prior to Igor Pro 5, external operations could not be called directly from user
functions.

The VDT2 window is atext window implemented using the XOPSupport TU (“text utility”)
routines. When the user chooses VDT2 Settings from VDT?2's submenu, VDT2 displays adialog
which allows the user to select the baud rate, serial port and other parameters. It stores these
settingsin Igor Preferences and in experiment files. VDT2 supports sending and receiving text
filesviaaseria port. It also allows the user to send or receive Igor waves and variables.

NIGPIB2

NIGPIB2 adds support for National Instruments GPIB cardsto Igor. It adds no menu items,
dialogs or windows but does add several powerful command line operations for controlling the
GPIB and for transferring ASCII and binary data. NIGPIB2 is a good starting point for an XOP
that interfaces Igor to hardware.

NIGPIB2 is the successor to the old NIGPIB XOP. The main differenceis that NIGPIB2 uses
Igor Pro 5's*Operation Handler” feature so that its operations can be called from user functions
aswell as from macros. Prior to Igor Pro 5, external operations could not be called directly from
user functions.

To compile NIGPIB2, you need some files from National Instruments. Thisis described in the
file"Compiling NIGPIB2.txt".

19

20

Chapter 1 — Introduction to XOPs

How Igor Integrates XOPs

When Igor Pro islaunched, it searches the Igor Extensions folder and any sub-folders for XOPs
or for aliases (Macintosh) or shortcuts (Windows) that point to X OPs.

Macintosh CFM XOP areidentified by their file type (IXOP). Macintosh Mach-O XOPs are
identified by the “.xop” extension in the name of the XOP package folder. Windows X OP files
areidentified by their “.xop” file name extension.

Igor first looks for an XOP's* XOPI’ (*XOP Information”) resource which contains general
information about the XOP. If thisismissing, Igor displays an error message.

Next Igor looks for optional resources to determine what menus, menu items, operations and
functions the XOP adds. Igor adds the menus to its main menu bar, adds menu items to its built-in
menus, adds the operationsto its list of operations and adds the functions to its list of functions.

If an XOP adds functions, Igor loads the X OP into memory at launch time and keeps it there. If
the XOP adds no functions then Igor does not load it until it is needed.

The user can access an XOP by selecting one of its menu items or by invoking one of its
operations or functions. The X OP then communicates with Igor using the X OP protocol.

The XOP protocol is set up in away that simplifies coding the XOP. At appropriate times, Igor
sends a message to the XOP by calling its XOPEntry function. The X OP performs the action
dictated by the message or ignores the messageif it is not applicable.

Every time Igor calls the XOP it passes a handle containing an | ORec structure which holds all of
the information that Igor and the X OP need to communicate. This handle, called an
IORecHandle, is the sole parameter and isincluded in every call from Igor to the XOP. The
message telling the XOP what it needs to do is afield in the IORec structure. Y ou do not need to
access the |ORec structure directly. XOPSupport routines do this for you. The IORecHandleg, like
all handles passed between Igor and the XOP, is a Macintosh-style handle, even when running on
Windows. For a discussion of Macintosh-style handles, see Data Sharing on page 139.

XOP messages fall into several logical groups. The first message that every XOP receivesisthe
INIT message. If the user chooses an XOP' s menu item, Igor sends the MENUITEM message to
the XOP. If the user invokes an operation that the X OP added, I1gor sends the CMD message. If
the user invokes a function that the XOP added, Igor sends the FUNCTION message. Thereisa
group of messages for XOPs which add windowsto Igor. There is another group of messages for
XOPs with atext window. There are messages that allow the XOP to store its settingsin the
current Igor experiment file or to load settings from the experiment file. Finally, when the XOPis

Chapter 1 — Introduction to XOPs

about to be closed, Igor sendsit the CLEANUP message. The XOP can close its windows or do
any other cleanup.

If your XOP is simple you can ignore most of these messages. The simplest XOP would ignore
al but the INIT and CMD or FUNCTION messages.

With three exceptions, Igor always communicates with your XOP by passing a message to your
XOPENtry routine. The first exception isthe INIT message. Igor sends this by calling your main
routine. The second exception isthe FUNCTION message. For optimum speed, you can instruct
Igor to call your external function directly rather than by passing the FUNCTION message to
your XOPEntry routine. Details on this are in Chapter 6. The third exception isthe CMD
message. External operations that use Igor’s Operation Handler feature (described in Chapter 5)
are called directly rather than by passing the CMD message to your X OPEntry routine.

Once the XOP has received an applicable message it needs to do something. Igor provides plenty
of help. An XOP can call Igor back, requesting a service. Thisis called a“callback”. When the
XOP does a callback, it passes the IORecHandle back to Igor. Thistime the handle contains a
message for Igor requesting a service. You don’t need to explicitly deal with the IORecHandle
since the XOPSupport routines do it for you.

On Windows only, afew callbacks, mostly pertaining to memory management and menus, go
directly to Igor and do not use the IORecHandle.

Like X OP messages, callback messages fall into several categories. There are callbacks to access
Igor waves and variables. There are callbacks to open atext window and to handle al of the
things the user might do in the text window. Thereis a callback that allows an XOP to put a
message (called a“notice”) in Igor’s history window. Thereis aso a callback that allows an XOP
to execute a standard Igor command.

A simple XOP may use just afew callbacks.

XOPs can be transient or resident. A transient XOP is one that isinvoked by the user, executes
and is then purged from memory. A resident XOP is one that needs to remain in memory
indefinitely. An XOP that adds awindow or that controls an on-going process needs to be
resident. If an XOP adds a function or an operation that uses Operation Handler then it also must
be resident.

Y ou can control whether your XOP is transient or resident using the SetX OPType X OPSupport
routine. Because most XOPs add either afunction or an operation that uses Operation Handler,
most XOPs will be resident.

21

22

Chapter 1 — Introduction to XOPs

The Basic Structure of an XOP

All XOP programs have the same simple structure which isillustrated in the sample XOPs. A
message from Igor is the trigger for an X OP action.

The first message that your XOP receivesisthe INIT message. This message is received by your
main routine. It must do two kinds of initialization: initialization common to all XOPs and
initialization specific to your XOP.

After the INIT message, most messages are handled by your XOPEntry routine. It figures out
what the message is and responds appropriately. For simple X OPs the response to most messages
isto do nothing because the message does not apply to the X OP. When a message does apply to
your XOP, you must respond. Often the response will be to do the appropriate callback to Igor.

External operations and functions are usually called directly, rather than going through the
XOPEnNtry routine.

In very rough terms, you can think of your XOP program as follows:

// Igor calls this for the corresponding external function
ExternalFunction ()

{

Process parameters
Return result

}

// Igor calls this for the corresponding external operation
ExternalOperation()

{

Process parameters
Return result

}

XOPEntry () // Igor sends most messages here

{

Receive message from Igor
switch (message)

Respond to message (often includes a callback to Igor)
}

}

main () // Igor sends the INIT message here

{
}

initialize

Chapter 1 — Introduction to XOPs

Here is amore detailed sketch of abasic XOP program. In this example, the XOP adds an
external operation and a menu item to Igor.

// XOP.c -- A sample Igor external operation

#include "XOPStandardHeaders.h" // Include ANSI-C, Mac or Win headers,XOP headers
#includes specific to your XOP go here

// Global Variables
Declaration of any global variables specific to this XOP

static int
RegisterOperation () // Register external operation with Igor

static int
ExecuteOperation () // Service external operation

{

Process parameters
Return result

}

static int
Menultem () // Handle selection of XOP's menu items if any

{

Determine which menu item the user selected
switch (menuItem)
Handle all menu items

}

static void
XOPQuit ()

{
}

static void

Do any necessary cleanup before the XOP is closed.

XOPEntry () // Called by Igor for all XOP messages after INIT.
{
switch (GetXOPMessage()) // What message did we receive?
case MENUITEM: // The user selected the XOP's menu item
Menultem() ;
break;

Other cases here as needed

case CLEANUP:

XOPQuit () ;
break;
1
}
void
main (IORecHandle ioRecHandle) // First call from Igor goes here.
{
XOPInit (ioRecHandle) ; // Initialization common to all XOPs
SetXOPEntry (XOPEntry) ; // Set entry point for future messages

XOP specific initialization
RegisterOperation() ; // Register external operation with Operation Handler

24

Chapter 1 — Introduction to XOPs

An XOP that adds just acommand line operation will be simpler than this sketch since it will
have no routines for dealing with menus.

An XOP that adds just a function will have an ExecuteFunction routine in place of
ExecuteOperation.

Notice that Igor passes a parameter of type |IORecHandle to the XOP' s main function. This
handle contains all of the information that Igor needs to communicate with the XOP.

The XOPInit(ioRecHandle) and SetX OPEntry(X OPENtry) callsin main are very important. Both
of the called routines are defined in X OPSupport.c.

XOPInit stores the ioRecHandle in a global variable for use by the other X OPSupport routines.
Thisisthelast time that you have to deal with the ioRecHandle directly. From here on, the
routines in X OPSupport deal with it for you.

SetX OPENtry sets afield in the ioRecHandl e that tells Igor the address of the function in the XOP
to pass future messages to. XOPENtry is the function in every XOP' smain .c file that handles
messages from Igor.

XOPs that add a window to Igor are somewhat more complex. On Macintosh, all window-related
messages (e.g., clicks, typing) come to the X OPEnNtry routine from Igor. On Windows, it is
different. The Windows OS sends window-related messages directly to the XOP window's
window procedure. See Chapter 9 for details.

Preparing to Write an XOP

Before you write your XOP, you need to have afeel for several things. Y ou can get thisfeel by a
combination of doing the Guided Tour in Chapter 2, playing with the sample X OPs, examining
their source code and reading this manual.

Y ou should understand the idea of Igor passing a message to an XOP. Y ou should understand the
idea of the XOP responding, including using callbacks to implement the response. Y ou should
understand the specific messages and callbacks used by a simple XOP.

Y ou need to know the mechanics of compiling an XOP in your development system. Thisis
covered in Chapter 3. Play with a sample XOP. Get used to the cycle of compiling, linking and
testing the XOP. Then make atrivial modification to it. Compile, link and test that.

Chapter 1 — Introduction to XOPs

Once you' ve got the feel for these things you can start to write your XOP. Identify the messages
and callbacks that you will need to implement your X OP. Identify the sample XOP that is the best
starting point for your XOP. Modify this sample XOP little by little, until you’ ve reached your
goal.

In most cases you must quit Igor to recompile your XOP.

Here are some other topics that you might need to know about before you diverge too far from the
sample XOPs.

Read Data Sharing on page 139 and M acintosh Memory M anagement on page 261 for
information on memory management techniques.

If your XOP adds operations, functions or menu itemsto Igor, it might need to display its own
error messages. See the section XOP Errorson page 127.

If your XOP adds an operation to Igor, read Chapter 5, Adding Oper ations.
If your XOP adds a function to Igor, read Chapter 6, Adding Functions.

If your XOP needs to manipulate waves, variables or data folders, read Chapter 7, Accessing | gor
Data.

If your XOP adds menus or menu itemsto Igor, read Chapter 8, Adding Menusand Menu
Items.

If your XOP adds a window to Igor, read Chapter 9, Adding Windows.
If your menu items summon dialogs, read Adding Dialogs on page 269.

If your XOP savesits settings or documents as part of an Igor experiment, read XOPs and
Experiments on page 132.

To create a help file for your XOP, read Chapter 11, Providing Help.
Chapter 12 lists common pitfalls.

Chapter 12 also includes a discussion of the most common sources of bugs, ways to find them,
and ways to avoid them in the first place. Reading this chapter will probably save you alot of
time and aggravation.

25

26

Chapter 1 — Introduction to XOPs

Technical Support

WaveMetrics provides technical support viatelephone and email. Before contacting us, you
might want to check the following sources of information:

» Thelist of common pitfallsin Chapter 12
* Thesample XOPs

Before contacting WaveMetrics, please gather thisinformation so that we can help you more
effectively:

» Theexact version of Igor you are running. The version number is displayed in the About Igor
Pro diaog.

* On Macintosh, the exact version of the Macintosh operating system you are running.
» On Windows, the operating system that you are using (Windows 98, ME, 2000, XP).
» The development system that you are using.

Email Support
Y ou can send guestions to us viaemail at support@wavemetrics.com.

For sales matters, please use sales@wavemetrics. com.

FTP Support
For alist of WaveMetrics FTP sites, please see::
http://www.wavemetrics.com/support/ftpinfo.html

Igor Mailing List

Thereisamailing list of Igor users on the Internet. Thisisthe best way to keep up with the latest
Igor news. Tojoin thelist or search archives from the list, see:

http://www.wavemetrics.com/MailingList/igorList.html

World-Wide Web
Our Web addressiswww . wavemetrics . com.

Telephone Support
Y ou can reach us at (503) 620-3001 from 9 AM to 5 PM Pacific time.

It is often very helpful if you can try things on your computer while speaking to us so, if possible,
call us from a phone near your computer.

Chapter 2

Guided Tour

OVEIVIBIW ...ttt sttt et et se s besteste e e e eneeneeneneens 29
What WE WITT DOttt e 29
1S = = o o RSP 29
BUIldiNg SIMPIEFIT ..o 30
Creating aNEW PrOJECL.......cccoiiiiece et 35
Creating the New Project In COAEWaITiOr.........coeveeeeneninenieseseeeeenins 36
Creating the New Project 1N XCOOE..........coviiiereieeeesese e 411
Creating the New Project INVisual CH++ 6ooveeeieiiiiecececee e 45
Creating the New Project InVisua C++ 7 (NET) ..ccoovveevvierieie e 49
Changing the RESOUICES.........c.eiiiiiiieeeceeeee e 53
Changing the Resources in CodeWarTiorccccveeevieieeieeie e e 53
Changing the Resources in XCode.........ccuevvvereecesecieesie e 53
Changing the Resources in Visual CH+ 6.......cccevveeiiineninenieeeeesenins 54
Changing the Resources in Visual CH+ 7coceeeeeenininineneseeeeesennns 55
Changing the HEIP....cuv i 56
Changing and Compiling the Code...........ceoririnirereeeeeese e 58
Testing SIMPIEGAUSSFILccviiiiiiieeeeee s 60
Where TO GO FIOM HEME.......ocuiieeeeeeeee e 62

27

28

Chapter 2 — Guided Tour

Chapter 2 — Guided Tour

Overview

This guided tour gives a step-by-step example of creating a custom curve fitting external function
using the SimpleFit project as a starting point. The tour consists of explanation interspersed with
numbered steps for you to do.

Thetour givesinstructions for Metrowerks CodeWarrior Pro 8.3, Apple's Xcode 1.1, Microsoft
Visual C++ 6 and Microsoft Visual C++ 7 (.NET). If you are using a newer development system,
you may need to make adjustments but the basic process remains the same.

The tour assumes that you are running Igor Pro 5. It will work with Igor Pro 4 but on Macintosh
you must use Igor Pro Carbon and keep in mind that the term “lgor Extensions’ refersto the
Carbon version of the Igor Extensions folder as described on page 9.

Where the instructions are different for the different development systems, you will see steps
identified as follows.

1-CodeWarrior.

<Step for CodeWarrior 8.3>.
1-Xcode.

<Step for Xcode 1.1>.
1-Visual C++ 6.

<Step for Visual C++ 6>.
1-Visual C++ 7.

<Step for Visual C++ 7 (.NET)>.

During the tour, you will be instructed to restart Igor Pro several times because thisis necessary
when you recompile an external function.

What We Will Do

The SimpleFit project creates a single SimpleFit external function that can be used to fit to a
polynomial. We will convert SimpleFit into a function called SimpleGaussFit that fits to series of
Gaussian peaks. In doing this, you will see how to create an external function that fitsto a
function of your choice.

Installation
We assume you have aready installed your development system, Igor Pro, and the XOP Toolkit.

29

30

Chapter 2 — Guided Tour

Building SimpleFit

Before starting the modification of SimpleFit, we will build the original version to verify that the
compiler and X OP toolkit installations are correct.

The SimpleFit folder isinside the IgorX OPs5 folder and contains the following project files:

:CW8:SimpleFit.mcp For CodeWarrior 8.3 on Mac OS 9 or Mac OS X.
:Xcode:SimpleFit.xcode For Xcode 1.1 on Mac OS X 10.3 or later

\V Ce\SimpleFit.dsw For Visual C++ 6 on Windows
\WVC\SimpleFit.sin For Visual C++ 7 (.NET) on Windows

1-CodeWarrior.

Double-click the SimpleFit.mcp project filein SimpleFit: CW8.
Metrowerks CodeWarrior starts up and the project window is shown.

[—cas @ simplefitmep"i—"o—=0H
) SimpleF it -«] | <3| %
_/"Files‘\,u/Link ﬂrdErVTﬂl‘gEts\

#| File | Code | Data |3 | =
= & [j, Sources 0 0 o« 3|~
w [SimpleFit.c o 0D« =
W Hl SimpleFit.r nta nta =

- ﬁ Mac Libraries 1] 1] =l
w [& CarbonLib o 0 =
¥ B CarbonFrannewarkLib] 1] =
= « [, ANSI Libraries 0 0 =
« HE MSL_All_Carbon Lib o 0 (=l
- ﬁ Igor Libraries 1] 1] =l
Ed & “OPSupport CFM Lib a 1] =
[+ |
& files 0] 7

Chapter 2 — Guided Tour

2-CodeWarrior.
Choose Project->Make.

In afew seconds the compiler will finish and an XOP file named SimpleFit.xop will be
created in your SimpleFit:CW8 folder. Note where thisis located for use in a upcoming step.

Don't worry if the compiler issues afew warnings.
3-CodeWarrior.

Closethe project window.
We are done with this project now.

1-Xcode.

Double-click the SimpleFit.xcode project filein SimpleFit:Xcode.
Xcode starts up and the project window is shown.

‘000 ™ SimpleFit =)

T l1| f O 1| I,lj
ESH bl | h lnl '-" 4\1‘ v - =

1 of 9 selected

' Groups & Files AT [File Name Al
p@ SimpleFit B &= Carbon.framework
..T;.rg&ts E| Infn.plist
b (4 Executables |é| I.r'nfu:nF'Iist.strings
p@ Errors and Warnings s Ilﬁxﬂ:Suppnrt.a
.'l'i"z_ Implementation Files % Eina::ﬂecl;it.c
b | NIB Files [l SimpleFit.r
p 4, Find Results "1 SimpleFit.xop
b "] Bookmarks H SimpleFit_Prefix.pch
b [J SCM

Bl Project Symbaols

32

Chapter 2 — Guided Tour

2-Xcode.

Choose Build->Build menu.

In afew seconds the compiler will finish and an X OP package named SimpleFit.xop will be
created in your SimpleFit:Xcode:build folder. Note where thisis located for usein a
upcoming step.

Don't worry if the compiler issues afew warnings.
3-Xcode.

Close the project window.
We are done with this project now.

1-Visual C++ 6.
Double-click the SimpleFit.dsw project workspacefilein SimpleFit\V C6.
Visual C++ starts up and the Workspace window is shown.
Click the FileView tab in the Wor kspace window and open the SimpleFit Filesicon.
The window should now ook like this:

B3 Workzpace Mi=] E3

D Source Files
i) Header Files

w7 Resource Files

- IGOR.lib
< |]
B8 Classiiew | Fileizw |
2-Visual C++ 6.

Choose “Build SimpleFit.xop” from the Build menu.

In afew seconds the compiler will finish and an XOP file named SimpleFit.xop will be
created in your SimpleFit\V C6 folder. Note where thisis located for use in a upcoming step.

Don’t worry if the compiler issues afew warnings.

Chapter 2 — Guided Tour

3-Visual C++ 6.
Choose Close Workspace from the File menu.
We are done with this project now.

1-Visual C++ 7 ((NET).
Double-click the SimpleFit.sin solution filein SimpleFit\VC7.
Visual C++ starts up.

Choose View—>Solution Explorer and open the SimpleFit icon.
The window should now ook like this:

Solution Explorer - SimpleFit |

Q Solution "SimpleFit' (1 project)
=- Ed SimpleFit
[Source Files
w3 Header Files
- (1 Resource Files
IGOR.lib
i] ¥OPSupportlib

lep = 2w = TN 2

2-Visual C++ 7 (NET).
Choose Build Solution from the Build menu.

In afew seconds the compiler will finish and an XOP file named SimpleFit.xop will be
created in your SimpleFit\V C7 folder. Note where thisis located for use in a upcoming step.

Don’t worry if the compiler issues afew warnings.
3-Visual C++ 7 ((NET).

Choose Close Solution from the File menu.

We are done with this project now.

33

34

Chapter 2 — Guided Tour

4.

10.

In the desktop, make an alias (Macintosh) or shortcut (Windows) for the newly created
SimpleFit.xop and drag the alias or shortcut tothe lgor Extensionsfolder in your Igor
Pro Folder.

Y ou could drag the XOP itself instead of the alias or shortcut. We prefer to leave the XOPin
the project folder while we are working on it.

Back in the SimpleFit folder, create an alias (Macintosh) or shortcut (Windows) for the
“SimpleFit Help.ihf” fileand put the alias or shortcut into the folder containing the
just-compiled XOP. Make surethealiasor shortcut hasthe exact same name asthe help
fileitsalf.

Igor looks for the help file in the folder containing the XOP itself (SimpleFit.xop in this
case). Normally the help file and the XOP reside in the same folder but thisis not true during
development. With Igor Pro 5.02 or later, Igor will find the help file if you put an identically-
named alias or shortcut to it in the same folder as the XOP. Prior to Igor Pro 5.02, you had to
move the help fileitself.

Launch Igor Pro.
Y ou must restart Igor Pro after changing the contents of the Igor Extensions folder.

Choose Command Help from the Help menu.

Select External from the Functions popup menu above thelist and uncheck the
Operations and Programming checkboxes.

Find SimpleFit in thelist and select it.

The custom help for this external function isshown. This help is stored in the “ SimpleFit
Help.ihf” file which isin the same folder as the SimpleFit XOP.

If you are using X code, you need Igor Pro version 5.01 or later to see the help.
Follow theinstructionsin the help for exercising the function.

Thisinvolves copying commands from the help and executing them in the Igor command
line. Y ou can also execute commands from a help file by selecting the command text and
pressing Control-Enter (Macintosh) or Ctrl-Return (Windows).

Chapter 2 — Guided Tour

Creating a New Project

We now create a new project, SimpleGaussFit, by cloning the SimpleFit project. We will then
change the SimpleGaussFit project to fit a Gaussian.

1. Onthedesktop, duplicate the SimpleFit folder and rename the new folder
SimpleGaussFit.

On Macintosh, use Duplicate in the Finder's File menu.

On Windows, use copy and paste in the desktop.
2. Onthedesktop, in the SimpleGaussFit folder, deletethe CW8, VC6, VC7 and Xcode
folders.
Later you will recreate the folder appropriate for your development system.
3. Changeall fileand folder names starting with “ SimpleFit” to start with
“SimpleGaussFit” .
The remaining files are:
resource.h
SimpleGaussFit Help.ihf
SimpleGaussFit.c
SimpleGaussFit.r

SimpleGaussFit.rc
SimpleGaussFitWinCustom.rc

From the next four sections, choose the one that is appropriate for your development system.

35

36

Chapter 2 — Guided Tour

Creating the New Project In CodeWarrior
1-CodeWarrior.
On the desktop, create a folder named CW8 inside the SimpleGaussFit folder.
Thisfolder will hold files specific to the CodeWarrior development system.
2-CodeWarrior.

In CodeWarrior, choose File->New. CodeWarrior will display the dialog shown below.
Set it up as shown, but adjust the L ocation based on whereyou put your |gor XOPs5
folder.

News
Jf PrujectVFileVﬂhject\
Project :

?@I Empty Project = | | r.ujec nam? |

'\;I:I Jave Applet Wizerd SimpleGaussFit.mop

?@I Java application Wizard Location:

@ ava Bean Wizard | hd:lgor¥0PsSSimpleGaussFitCwa | [Set... |
4
?@ Mac 05 C Stationery
m Mac 05 C++ Stationery [[] Add to project:

i
'}EI Mac 05 Power Plant Stationery [-]

% Mac 05 X Cocoa Stationery

?@ Mac 05-Win32 HMulti-Target Stationery
W winzz C Stationery

W win3z C+ + Stationery

Chapter 2 — Guided Tour

3-CodeWarrior.
Click the OK button. The New Project window will appear. Set it up likethis:

Mew Project

Select project stationery:

H Project Stationery
= Mac 05 Carbon
Mac 05 Shared Library
= Mac 05 Tool box
C++ Toolbox Carbon
C++ Toolbox Carbon Bundle
C++ Toolbox Carbon Mib Bundle
[Standard Console
[+ Mac OS5 Classic
[+ Mac 05 X Mach-0
[+ Hulti-Target

| Cancel I 0K I

Although we are not using C++, we create a C++ project in case we want to use C++ in the
future. The main upshot of choosing C++ here is that the C++ compiler will be used instead of
the C compiler and the C++ compiler is more picky about syntax.

4-CodeWarrior.

Click the OK button.

CodeWarrior will create a new project inside the :SimpleGaussFit: CW8 folder.
5-CodeWarrior.

In the desktop, verify that you have a SimpleGaussFit.mcp CodeWarrior project file
inside :1gor XOPs.CWS8.

If thisis not what you have, close the CodeWarrior project window and go back to step 1.

37

38

Chapter 2 — Guided Tour

6-CodeWarrior.

In the CodeWarrior project window, open the group icons and select the files shown
below.

Now control-click and choose Clear from the resulting popup menu to remove thefiles
from the project.

These are sample CodeWarrior files that we do not need.

O "= @ SimpleGausskit =—F—— B
ﬂ. Carbon Toolbax Debug — 5 ﬁ' @ 5‘
J/Files\/[ink ﬂrdErVTargEtS\

#| File | Code | Data |40|% |-
= & [, Sources] 0O« « @]
W B Simplealertcp o o« = @

= & [j, Resources 0 O =
W BL SimpleAlertrare nia nfa = =
- B Simpledlertplc nia nfa =
W B cerbr nia nia = =
- Ei Libraries o o s =
¢ B MSL_All_Carbon_ . o o e =
H&S MSL_All_Carbon Lib nfa nia =

W s CarbonLib o o e =[+]

T files o o =

7-CodeWarrior.

On the desktop, delete the sample CodeWarrior files from the SimpleGaussFit: CW8
folder:

carb.r
SimpleAlert.cp
SimpleAlert.plc
SimpleAlert.rsrc

Chapter 2 — Guided Tour

8-CodeWarrior.

In the CodeWarrior project window, click the Sourcesicon, choose Project->Add Files
and add the following files:

SimpleGaussFit.c
SimpleGaussFit.r

CodeWarrior will ask you which targets you want to add the files to. Add them to all targets.
CodeWarrior will display awindow saying that it has created an access path to thefiles.

9-CodeWarrior.

Inthe CodeWarrior project window, click the Librariesicon, choose Project->Add Files
and add the following file:

:1gorX OPs5: X OPSupport: CW8: X OPSupport CFM.lib

CodeWarrior will ask you which targets you want to add the library to. Add it to all targets.
CodeWarrior will display awindow saying that it has created an access path to the library.

10-CodeWarrior.

In the CodeWarrior, choose Edit->Carbon Toolbox Debug Settings and makethe
following changesto the target settings:

Target
Target Settings
Target Name: SimpleGaussFit Debug
Access Paths
Click in the User Paths section to activateit.

Click the Add button and add the 1gorX OPs5: X OPSupport folder asa
project-rel ative access path.

The resulting path should be displayed as: { Project} :::X OPSupport:
Runtime Settings

Click the Choose button and find your Igor Pro 5 application file.
PPC Target

Project: Shared Library

File Name: SimpleGaussFit.xop

Creator: IGRO

Type: IXOP

39

40

Chapter 2 — Guided Tour

Linker
PPC Linker
Initialization: __initialize (starts with two underscores)
Main: main
Termination: __terminate (starts with two underscores)

In some versions of CodeWarrior, failure to enter the initialization and termination entry
points as shown caused a crash when a C++ XOP threw an exception.

11-CodeWarrior.

Click the Save button to save the tar get settings and then close the settings window.
12-CodeWarrior.

Choose Project->M ake to make CodeWarrior compile the XOP.
13-CodeWarrior.

In the desktop, verify that you have an XOP file named SimpleGaussFit.xop in
I gor XOPs5/SimpleGaussFit/CW8.

14-CodeWarrior.

Make an aliasfor the SimpleGaussFit.xop XOP filein and put the aliasin your Igor
Extensionsfolder.

Chapter 2 — Guided Tour

Creating the New Project In Xcode

If your Xcode version (as shown in the About Xcode dialog) islessthan 1.1, you should update to
the latest X code. These instructions were created with Xcode 1.1 and are slightly different from
instructions for version 1.01.

1-Xcode.
On the desktop, create a folder named X code inside the SimpleGaussFit folder.
Thisfolder will hold files specific to the X code development system.
2-Xcode.
Choose File->New Project.
Select Bundle, Carbon Bundle, click Next.
Enter SimpleGaussFit as the project name.

Click the Choose button. In theresulting dialog, select your
I gor XOPs5/SimpleGaussFit/Xcode folder and click the Choose button.

The Location edit box should now contain a path like:
/X OP Toolkit 5/1gorX OPs5/SimpleGaussFit/X code/SimpleGaussFit/
Thisisnot what we want.
Removethelast part to give:
/X OP Toolkit 5/1gorX OPs5/SimpleGaussFit/X code/
The window should now look something like this:

"o0 (8] Assistant i
.; New Carbon Bundle

Project Name: SimpleGaussFit

Project Directory: | /XOP Toolkit 5/IgorXOPs5/SimpleGaussFit/Xcode/ E] (" Choose...)

The project directory /XOP Toolkit 5/1gorXOPs5 fSimpleGaussFit/Xcode/ will be created if
necessary, and the project file SimpleGaussFit.xcode will be created therein.

(Cancel) -_-Previous (Finish)

S

¥4

41

Chapter 2 — Guided Tour

The Project Directory box will show something different depending on where you put your
IgorXOPs5 folder. But make sure that the path points to the Xcode folder that you created in
the SimpleGaussFit folder.

3-Xcode.
Click Finish.

This puts some project filesin the Xcode folder. SimpleGaussFit.xcode is the project
package. In the Finder verify that you now have a hierarchy something like this:

SimpleGaussFit
Xcode
build
SimpleGaussFit.xcode

There will be other files and folders as well as those shown above.

4-Xcode.

In Xcode, in the project window, open the SimpleGaussFit group at thetop of the
Groups & Fileslist, then open the Source folder in the SimpleGaussFit group.

5-Xcode.
Select the main.c samplefile that was put there by Xcode.
Choose Edit->Delete.
In theresulting dialog, click the Delete References and Files button.
This removes main.c from the project and deletes it from disk.

6-Xcode.
Click the Source group icon and choose Project->Add Files.
In theresulting dialog, select the following files:

SimpleGaussFit.c
SimpleGaussFit.r

Now click the Add button.
Xcode now presents another dialog.
7-Xcode.
From the Reference Type popup menu, choose Relative to Project.
Click the Add button.

We make the references project-relative so that if you move your 1gorXOPs5 folder, the
project references will remain valid.

Chapter 2 — Guided Tour

8-Xcode.
Inthe Groups & Fileslist, select the SimpleGaussFit->Exter nal Frameworks &
Librairiesicon.
Choose Project->Add Files. Add thefile:
I gorX OPs5/X OPSupport/X code/libX OPSupport.a.
Xcode now presents another dialog.

9-Xcode.
From the Reference Type popup menu, choose Relativeto Project.
Click the Add button.

10-Xcode.

In the desktop, find the Exports.exp filein the SimpleFit: X code folder and copy it to the
SimpleGaussFit.X code folder.

The Exports.exp fileis aplain text file that tells the X code what symbols the project exports.
In the case of an XOP, the only exported symbol is“main” since thisisthe only routine in the
XOP that Igor must be able to locate by name.
11-Xcode.
Inthe Groups & Fileslist, open the Targetsicon.
Select the Targets->SimpleGaussFit icon and choose Project->Get | nfo.
This displays the info window for the SimpleGaussFit target.
Click the Build tab.
Click the Customized Settingsicon in the Collectionstray and enter the following build
settings:
Header Search Paths ..[..IXOPSupport
Library Search Paths ..[.IXOPSupport/Xcode
Wrapper Extension Xop
OTHER_REZ_FLAGS i .././XOPSupport -d TARGET _RT_MAC_MACHO

Thelast letter of TARGET_RT_MAC_MACHO is“oh”, not zero. If you spell it wrong, your
XOP's XOPI resource will be wrong and Igor will display an error when you try to run your
XOP.
12-Xcode.
Open the General icon in the Callectionstray, select the Linkingicon, and enter this
setting:
Exported SymbolsFile ./Exports.exp

43

Chapter 2 — Guided Tour

13-Xcode.
Select the Packaging icon, and enter this setting:
Force Package Info Generation Checked (that is, check the checkbox)
14-Xcode.
Click the Propertiestab at the top of the info window and enter the following settings:

Type IXOP (third character is“oh”, not zero)
Creator IGRO (last character is zero, not “oh”)
15-Xcode.
Close the info window.
16-Xcode.

Choose Build->Build.
Xcode will build the project. Y ou may get some warnings about items where the Xcode
compiler is pickier than most. When Xcode isfinished, it should display a“Build succeeded”
message.

17-Xcode.
In the desktop, verify that you have a package folder named SimpleGaussFit.xop in
I gor XOPs5/SimpleGaussFit/X code/build.

This package folder is your compiled XOP. It should look like afile in the Finder and you
should have to Control-click it and choose Show Package Contents to see what it contains. At
least, that's the theory. We have had problems getting it to work. If your folder looks like a
folder, don’t worry — it won't prevent the XOP from working and we'll give instructions for
fixing it in Chapter 3 (Xcode XOP Package on page 85.).

18-Xcode,

Make an aliasfor the SimpleGaussFit.xop package folder and put the aliasin your Igor
Extensionsfolder.

Chapter 2 — Guided Tour

Creating the New Project In Visual C++ 6
1-Visual C++ 6.
On the desktop, create a folder named VC6 inside the SimpleGaussFit folder.
Thisfolder will hold files specific to the Visual C++ 6 development system.
2-Visual C++ 6.
In Visual C++ 6, choose File->New to display the New dialog.
Select Win32 Dynamic-Link Library.
Enter SimpleGaussFit asthe project name.
In the Location box, enter the path to the VC6 folder that you just created.
The dialog should ook something like this:
New

Files Projects | Workspaces | Other Documents |

L&] ATL COM Appiizard Project narme:

7] Cluster Resource Type Wizard ISimpIeGaussFit
g1 Custom AppiWizard
f& Database Project _—
B D Studio Addkin Wizard e
S AP Extension Wizard |C:\,Igor><0PsE\SimpIeGaussFitWCE J
=] b akefile
i hFC Activex Controbwizard
[MFC Appiizard (dll)
B AFC Appiiizard (exe) &~ Create newworkspace
i Hility Project) Addtm current warkspase

=]'Win32 Application

Wind2 Console Application
Bvind? Chynamic-Link Library
%] Wvina2 Static: Library

| Dependene) of:
| =

Platfarms:
[wl'in3 2

DK I Cancel

The Location box will show something different depending on where you put your
IgorX OPs5 folder. But make sure that the path points to the VC6 folder that you created in
the SimpleGaussFit folder.

3-Visual C++ 6.
Click the OK button.
Visual C++ 6 displays a“Win32 Dynamic-Link Library” wizard.

46

Chapter 2 — Guided Tour

4-Visual C++ 6.
Select theradio button labeled “ An empty DLL project”.
Click the Finish button.
Visual C++ 6 displays a New Project Information dialog.
5-Visual C++ 6.
Verify the Project Directory shown at the bottom/left corner of the dialog.

It should point to the VC6 folder that you created in the SimpleGaussFit folder. If not, click
Cancel and go back and fix it.

6-Visual C++ 6.
Click the OK button.
7-Visual C++ 6.
In the desktop, verify at the contents of your VC6 folder.

It should contain files named SimpleGaussFit.dsp (the project file) and SimpleGaussFit.dsw
(the workspace file).

8-Visual C++ 6.
In Visual C++ 6, choose Proj ect->Settings.
In the Project Settings dialog, in the Settings For menu, choose All Configurations.
Enter the settings shown below.
Only things that need to be changed relative to the default settings are listed here.
Debug Pane
General Category
Executable for debug session: <Path to your Igor Pro executable>
(e.g., C:\Program Files\WaveMetrics\Igor Pro Folder\lgor.exe)
C/C++ Pane
Code Generation Category
Userun-timelibrary: Single-Threaded
Sruct member alignment: 2 Bytes
Preprocessor Category
Additional include directories: ..\.\X OPSupport
Link Pane
General Category
Output file name: SimpleGaussFit.xop

Chapter 2 — Guided Tour

Object/library modules: Add version.lib
Input Category
Ignore Libraries: Add libcd.lib
Resource Pane
Additional resource include directories: ..\..\XOPSupport
9-Visual C++ 6.
Click the OK button in the Project Settings dialog.
10-Visual C++ 6.
Choose Build->Set Active Configuration.
In theresulting dialog, select the debug configuration and click OK.
11-Visual C++ 6.
Choose Save Workspace from the File menu.
12-Visual C++ 6.

Click the FileView tab on the Workspace window and open the SimpleGaussFit Files
icon.

Select the SimpleGaussFit Filesicon.
13-Visual C++ 6.
Choose Project->Add To Project->Files and add the following files:

SimpleGaussFit.c
SimpleGaussFit.rc

If you get an error message saying that Visual C++ can't find "afxres.h", thisis because you
did not install MFC (Microsoft Foundation Class) when you installed Visual C++ 6. See
instructions for handling this on page 89.

14-Visual C++ 6.
Choose File->Open.
Select Text from the Open As popup menu.
Open the SimpleGaussFit.rc for editing astext.
Find the string “ SimpleFitWinCustom.rc”. It occursin two places.
Thisfile nameisleft over from the original SimpleFit XOP.
Change both occurrencesto “ SimpleGaussFitWinCustom.rc”.
Save and closethe SimpleGaussFit.rcfile.

47

48

Chapter 2 — Guided Tour

15-Visual C++ 6.
Choose Project->Add To Project->Files.
In theresulting dialog, choose Library Filesfrom the Files of Type menu.
Navigate to the Igor XOPs5\XOPSupport folder and add IGOR.lib.
16-Visual C++ 6.
Choose Project->Add To Project->Files.
In theresulting dialog, choose Library Filesfrom the Files of Type menu.
Navigate to the I gor XOPs5\X OPSupport\VC6 folder and add XOPSupport.lib.
17-Visual C++ 6.
Choose File->Save Wor kspace.
18-Visual C++ 6.
Choose Build->Build SimpleGaussFit.xop.

Visual C++ 6 should build the XOP with no errors (though you may get some warnings),
creating the file SimpleGaussFit.xop in your IgorX OPs5\ SimpleGaussFit\VV C6 folder.

If you get an error message saying that Visual C++ can't find "afxres.h", thisis because you
did not install MFC (Microsoft Foundation Class) when you installed Visual C++ 6. See
instructions for handling this on page 79.

19-Visual C++ 6.

Make a shortcut for the SimpleGaussFit.xop file and put the shortcut in your Igor
Extensionsfolder.

Chapter 2 — Guided Tour

Creating the New Project In Visual C++ 7 (.NET)
1-Visual C++ 7.
On the desktop, create a folder named VC7 inside the SimpleGaussFit folder.
Thisfolder will hold files specific to the Visual C++ 7 development system.
2-Visual C++ 7.
In Visual C++ 7, choose File->New->Pr oject to display the New Project dialog.
From the Project Typeslist, select Visual C++ Projects.
From the Templateslist, select Win32 Project.
Enter SimpleGaussFit asthe project name.

In the Location box, enter the path to the VC7 folder that you just created.
The dialog should look something like this:

New Project

Froject Types: Templates: IEJ
+{10 Wisual Basic Projects Application Ulass Librany Empty Froject d
+[11 wisual C# Projects
-3 Wisual C++ Projects é%;
(1 Setup and Deployment Projects

@3 Other Projects Managed C++ MFC Activeix MFC
.13 Wisual Studio Solufions Web Service Contral Application

lAWinSE console application or other Win32 project.

MNarme: ISimpIeGaussFit

Location: IC:\,IgDrXOPsE\SimpIeGaussFit‘\\fC? ﬂ Browse... |

Frojectwill be created at Chgor=<0PstSimpleGaussFitWCrSimple GaussFit

¥ hare | 0K I Cancel | Help |

The Location box will show something different depending on where you put your

IgorX OPs5 folder. But make sure that the path points to the VC7 folder that you created in
the SimpleGaussFit folder.

Note where the dialog says “ Project will be created at . . .”. We really want the project filesto
be created in the VC7 folder but Visual C++ 7 insists on creating another folder inside VC7.
We will fix that later.

49

50

Chapter 2 — Guided Tour

3-Visual C++ 7.
Click the OK button.
Visual C++ 7 displays a“Win32 Application Wizard” window.
4-Visual C++ 7.
Click Application Settings.
Click the DLL radio button.
Check the Empty Project checkbox.
Click the Finish button.
Visual C++ 7 creates the project files.
5-Visual C++ 7.
Choose File->Close Solution.
6-Visual C++ 7.
In the desktop, open the VC7 folder that you created.
It should contain the extra SimpleGaussFit folder that Visual C++ 7 created.

M ove the following files from the \VC7\SimpleGaussFit folder to the\VC7 folder:
SimpleGaussFit.gln (the “ solution” file)
SimpleGaussFit.veproj (the project file)
7-Visual C++ 7.

Delete the \VC7\SimpleGaussFit folder which now contains only non-essential files that
Visual C++ 7 created.

8-Visual C++ 7.
Verify that you now havethe following hierarchy:

Igor XOPs5
SimpleGaussFit
VC7
SimpleGaussFit.gin
SimpleGaussFit.vcproj
9-Visual C++ 7.

In Visual C++ 7, choose File->Open->Project and open the SimpleGaussFit.sn filein
the VC7 folder.

10-Visual C++ 7.
Choose View->Solution Explorer.
In the Solution Explorer window, open the SimpleGaussFit icon.

Chapter 2 — Guided Tour

11-Visual C++ 7.
Choose Project->Add Existing Item and add the following files:
SimpleGaussFit.c
SimpleGaussFit.rc
12-Visual C++ 7.
Choose File->Open->File.
Select Resour ce Files from the Files Of Type popup menu.
Select SimpleGaussFit.rcin thefilelist.
Click the down-arrow at theright edge of the Open button and choose Open With.
Choose “ Sour ce Code (Text) Editor”.
Click the Open button to open SimpleGaussFit.rc for editing astext (not asa resour ce).
Find the string “ SimpleFitWinCustom.rc”. It occursin two places.
Thisfile nameis left over from the original SimpleFit XOP.
Change both occurrencesto “ SimpleGaussFitWinCustom.rc”.
Save and close the SimpleGaussFit.rcfile.
13-Visual C++ 7.
Choose Project->Add Existing Item.
In theresulting dialog, choose All Files from the Files of Type menu.
Navigate to the Igor XOPs5\X OPSupport folder and add IGOR.lib.

14-Visual C++7.

Choose Project->Add Existing Item.

In the resulting dialog, choose All Files from the Files of Type menu.

Navigate to the I gor XOPs5\X OPSupport\VC7 folder and add XOPSupport.lib.
15-Visual C++ 7.

In Solution Explorer, right-click the SimpleGaussFit icon and choose Properties.

In the SimpleGaussFit Property Pages window, in the Configuration menu, choose Al
Configurations.

Enter the settings shown below.
Only things that need to be changed relative to the default settings are listed here.
General
Build Browser Information: Yes

51

52

Chapter 2 — Guided Tour

C/C++
General
Additional Include Directories. .\..\X OPSupport
Code Generation
Runtime Library: Single-Threaded
Struct Member Alignment: 2 Bytes
Linker
General
Output File: SimpleGaussFit.xop
Input
Additional Dependencies:. version.lib
Resources
Additional Include Directories: ..\..\X OPSupport
16-Visual C++ 7.
Click the OK button in the SimpleGaussFit Property Pages window.
17-Visual C++ 7.
In Solution Explorer, right-click the SimpleGaussFit icon and choose Properties.
In the Configuration menu, choose Debug and enter the following setting:
Debugging

Command: <Path to your Igor Pro executable>
(e.g., C:\Program Files\WaveMetrics\Igor Pro Folder\lgor.exe)

Click the OK button.
18-Visual C++ 7.
Select the SimpleGaussFit icon in the Solution Explorer window.
Choose File->Save SimpleGaussFit.
19-Visual C++7.
Choose Build->Build SimpleGaussFit.

Visual C++ 7 should build the XOP with no errors (though you may get some warnings),
creating the file SimpleGaussFit.xop in your |gorX OPs5\ SimpleGaussFit\V C7 folder.

20-Visual C++ 7.

Make a shortcut for the SimpleGaussFit.xop file and put the shortcut in your Igor
Extensionsfolder.

Chapter 2 — Guided Tour

Changing the Resources
Igor examines an XOP's resources to determine what operations, functions, and menu items the
XOP adds. In this section we modify the project’ s resources so they apply to SimpleGaussFit
instead of SimpleFit.
Changing the Resources in CodeWarrior
1-CodeWarrior.

In the project window, double-click SimpleGaussFit.r fileto edit thefile.
2-CodeWarrior.

Replace all occurrences of “ SimpleFit” with “ SimpleGaussFit”.

One of the things you changed was the X OPF resource. Thisis how Igor knows what
function this XOP adds, what its parameters are and what its return valueis.

3-CodeWarrior.
Save and close SimpleGaussFit.r.

Changing the Resources in Xcode
1-Xcode.

In the project window, double-click SimpleGaussFit.r fileto edit thefile.
2-Xcode.

Replace all occurrences of “ SimpleFit” with “ SimpleGaussFit”.

One of the things you changed was the X OPF resource. Thisis how Igor knows what
function this XOP adds, what its parameters are and what itsreturn valueis.

3-Xcode.
Save and close SimpleGaussFit.r.

53

Chapter 2 — Guided Tour

Changing the Resources in Visual C++ 6

In Visual C++, two resource files are used: SimpleGaussFit.rc and
SimpleGaussFitWinCustom.rc. SimpleGaussFit.rc contains standard Windows resources, such as
the version resource. SimpleGaussFitWinCustom.rc contains X OP-specific resources. Because
Visual C++ alows you to directly include only one .rc filein a project, SimpleGausskit.rc
contains an include statement to include SimpleGaussFitWinCustom.rc.

In the following steps we will first modify SimpleGaussFitWinCustom.rc and then
SimpleGaussFit.rc.
1-Visual C++ 6.

Choose Open (not Open Workspace) from the File menu.

In the resulting dialog, choose Text from the Open As popup menu.

Open the SimpleGaussFitWinCustom.rc file.

This opens the file for editing as atext file rather than using the resource editor.
2-Visual C++ 6.

Replace all occurrences of “ SimpleFit” with “ SimpleGaussFit”.

One of the things you changed was the XOPF resource. Thisis how Igor knows what
function this XOP adds, what its parameters are and what itsreturn value is.

3-Visual C++ 6.

Save and close SimpleGaussFitWinCustom.rc.
4-Visual C++ 6.

Choose Open (not Open Workspace) from the File menu.

In theresulting dialog, choose Text from the Open As popup menu.

Open the SimpleGaussFit.rcfile.

This opens the file for editing as atext file rather than using the resource editor.
5-Visual C++ 6.

Replace all occurrences of “ SimpleFit” with “ SimpleGaussFit”.

The name occurs in the version resource and also in two include statements. However, we
already changed the include statements as part of creating the project.

6-Visual C++ 6.
Save and close SimpleGaussFit.rc.

Chapter 2 — Guided Tour

Changing the Resources in Visual C++ 7

In Visual C++, two resource files are used: SimpleGaussFit.rc and
SimpleGaussFitWinCustom.rc. SimpleGaussFit.rc contains standard Windows resources, such as
the version resource. SimpleGaussFitWinCustom.rc contains X OP-specific resources. Because
Visual C++ alows you to directly include only one .rc filein a project, SimpleGausskit.rc
contains an include statement to include SimpleGaussFitWinCustom.rc.

In the following steps we will first modify SimpleGaussFitWinCustom.rc and then
SimpleGaussFit.rc.

1-Visual C++ 7.
Choose File->Open->File.
Select SimpleGaussFitWinCustom.rcin thefilelist.
Click thedown-arrow at the right edge of the Open button and choose Open With.
Choose “ Source Code (Text) Editor”.

Click the Open button to open SimpleGaussFitWinCustom.rc for editing astext (not as
aresource).

2-Visual C++ 7.

Replace all occurrences of “ SimpleFit” with “ SimpleGaussFit”.

One of the things you changed was the X OPF resource. Thisis how Igor knows what
function this XOP adds, what its parameters are and what its return valueis.

3-Visual C++ 7.
Save and close SimpleGaussFitWinCustom.rc.
4-Visual C++7.
Choose File->Open->File.
Select SimpleGaussFit.rcin thefilelist.
Click the down-arrow at the right edge of the Open button and choose Open With.
Choose “ Source Code (Text) Editor”.
Click the Open button to open SimpleGaussFit.rc for editing astext (not as a resour ce).

55

Chapter 2 — Guided Tour

5-Visual C++ 7.

Replace all occurrences of “ SimpleFit” with “ SimpleGaussFit”.

The name occurs in the version resource and also in two include statements. However, we
aready changed the include statements as part of creating the project.

6-Visual C++ 7.
Save and close SimpleGaussFitWinCustom.rc.

Changing the Help

In this section, we modify the help that will appear for SimpleGaussFit in Igor Pro’s Help
Browser. This process consists of editing the help text in the “ SimpleGaussFit Help.ihf” file.

1. Inlgor Pro, choose File->Open File->Notebook and open the “ SimpleGaussFit
Help.ihf” filein the SimpleGaussFit folder.

We are opening the help file as a notebook so we can edit it.

On Windows, select All Files from the Files of Type popup menu to see“.ihf” filesin the
Open File diaog.

Replace all occurrences of “ SimpleFit” with “ SimpleGaussFit” .

Change the body of the help text to describe the SimpleGaussFit function.
Here is some suggested body text:

A fitting function for multiple Gaussian peaks. The number
of peaks is set by the length of the coefficient wave w. If
w contains four points then one peak will be generated as
follows: w[0] + w[l]l*exp (- ((x-w[2])/w[3])"2)

Add three additional coefficients for each additional peak
by adding three points to the coefficients wave.

If thiswerea“red” project, we would provide more help with an example of how to use the
external function.

4. Savethe notebook by choosing File->Save Notebook.

5. Closethenotebook window. When Igor asksif you want to kill or hideit, click Kill.

Now we will compile the help file so that SimpleGaussFit will provide helpin Igor’s Help
Browser.

56

Chapter 2 — Guided Tour

6. Choose File->Open->Help File and open the “ SimpleGaussFit Help.ihf” fileasa help
file.

Igor will display dialog asking if you want to compile the help file.

Click the Yesbutton.

Next Igor will display adiaog saying that the help file has been compiled.
Click the OK button.

7. Closethehélp file by pressing the option key (Macintosh) or the Alt key (Windows)
while clicking the help window's close box.

The help will appear in Igor's Help Browser after we have compiled and activated the
SimpleGaussFit XOP.

57

58

Chapter 2 — Guided Tour

Changing and Compiling the Code

If you were to compile the project right now you would create an external function named
SimpleGaussFit but it would still act like SimpleFit. In this section, we modify the code to fit a
Gaussian rather than a polynomial.

1. Inyour development system, open SimpleGaussFit.c for editing.
2. Changeall instances of “ SimpleFit” to “ SimpleGaussFit”.
3. Find the SimpleGaussFit function and make the following changes:
Change
double r,x;

To

double r,x,t;

Then, in the NT_FP32 case statement, change:
i = np-1;

r fplil;
for(i=i-1; i>=0; i--)
r = fpl[i] + r*x;
to
r = fp[0];
for (i=1; i<np; i+=3) {
t = (x-fpli+1]) / fpli+2];
r += fpl[i] * exp(-t*t);

}

Carefully proofread the changes.

Chapter 2 — Guided Tour

Similarly, in the NT_FP64 case statement, change:
i = np-1;
dp [i];

for(i=i-1; i>=0; i--)

r

r = dpli] + r*x;
to
r = dpl0];
for(i=1; i<np; i+=3) {
t = (x-dpli+1]1) / dpli+2];
r += dpl[i] * exp(-t*t);

}

Carefully proofread the changes.

4A. Change the comments at the head of the function and at thetop of thefile such that they
properly reflect the new code.

4B-CodeWarrior.
If you are using CodeWarrior, add thisline near thetop of thefile:
using std::exp;

Thisis needed because the CodeWarrior C++ header files put the standard math functionsin
the std namespace. Other development systems do not do that.

5. Saveyour changesand close the SimpleGaussFit.c window.
6-CodeWarrior.
Compilethe project by choosing Project->Make.

The compile and link should proceed without errors (although you may get some warnings),
creating SimpleGaussFit.xop in the IgorX OPS5: SimpleGaussFit: CW8 folder. If you have
errors, carefully check the changes that you made to the source code.

6-Xcode.
Compilethe project by choosing Build->Build.

The compile and link should proceed without errors (although you may get some warnings),
creating SimpleGaussFit.xop in the 1gorX OPS5: SimpleGaussFit: X code:build folder. If you
have errors, carefully check the changes that you made to the source code.

59

60

Chapter 2 — Guided Tour

6-Visual C++ 6.
Choose “ Build SimpleGaussFit.xop” from the Build menu.

The compile and link should proceed without errors (although you may get some warnings),
creating SimpleGaussFit.xop in the IgorX OPS5: SimpleGaussFit:VV C6 folder. If you have
errors, carefully check the changes that you made to the source code.

6-Visual C++ 7.

Choose “Build SimpleGaussFit” from the Build menu.

The compile and link should proceed without errors (although you may get some warnings),
creating SimpleGaussFit.xop in the IgorX OPS5: SimpleGaussFit:V C7 folder. If you have
errors, carefully check the changes that you made to the source code.

Testing SimpleGausskFit
Y our external function, SimpleGaussFit, should now be functional. Let’ stest it.

1. Quit lgor Pro.

Igor Pro scans X OPs at launch time and loads X OPs that add external functions into memory.
So you must restart Igor when you change your XOP.

2. Inthe SimpleGaussFit folder, drag the “ SimpleGaussFit Help.ihf” fileinto the folder
containing the just-compiled XOP.

Igor looks for the help file in the folder containing the X OP itself (SimpleGaussFit.xop in this
case).
3. Restart Igor Pro.
Igor Pro will load the SimpleGaussFit function into memory.
Choose Help->Command Help.

Select External from the Functions popup menu above thelist and uncheck the
Operations and Programming checkboxes.

Chapter 2 — Guided Tour

6. Find SimpleGaussFit in thelist and select it.

The custom help for this external function is shown. Igor gets the help from the
“SimpleGaussFit Help.ihf” file which must be in the same folder as the SimpleGaussFit XOP.

If you don’t see SimpleGaussFit in the list of functions:

Check that you created an aias (Macintosh) or shortcut (Windows) from
SimpleGaussFit.xop and placed the alias or shortcut in the Igor Extensions folder.

If you have more than one Igor Extensions folder on your machine, check that you have
put the alias or shortcut in the right Igor Extensions folder. See page 9.

Check that you put the “ SimpleGaussFit Help.ihf” file in the folder containing
SimpleGaussFit.xop.

Check that you changed all occurrences of SimpleFit to SimpleGaussFit in
SimpleGaussFit.c, SimpleGaussFit.r (Macintosh), and SimpleGaussFit.rc and
SimpleGaussFitWinCustom.rc (Windows).

If you do see SimpleGaussFit in the list of functions but get a message saying help is not
available when you select it:

Check that you put the “ SimpleGaussFit Help.ihf” file in the folder containing
SimpleGaussFit.xop.

Check that you compiled the “SimpleGaussFit Help.ihf” file as directed on page 56.

If you are using Xcode, update to the latest Igor Pro. Y ou need at least Igor Pro version
5.01 to see the help.

Closethe Help Browser.

Execute the following commands to exer cise your external function with single-precision

data:

Make data; SetScale x,-1,10,data

data = 0.1 + gnoise(0.05) // offset

data += 2*exp(-((x-2)/0.5)%2) // first peak
data += 3*exp (- ((x-4)/1)72) // second peak

Display data

Modify rgb=(0,0,50000), mode=2, lsize=3

Make coef = {0.1, 1.5, 2.2, 0.25, 3.8, 3.5, 0.5}
FuncFit SimpleGaussFit coef data /D

To avoid errors due to arithmetic truncation it is best to use double-precision for curve fitting.

61

62

Chapter 2 — Guided Tour

9. Executethefollowing commandsto exercise your external function with double-
precision data:

Redimension/D data, coef
coef = {0.1, 1.5, 2.2, 0.25, 3.8, 3.5, 0.5}
FuncFit SimpleGaussFit coef data /D

If the fit doesn’t converge or looks incorrect, check the changes that you made to
SimpleGaussFit.c and the commands that you executed in Igor.

If you need to recompile the XOP, you will need to quit Igor Pro, recompile, and relaunch Igor

Pro. Thisis necessary because Igor Pro loads the external function code into memory at launch
time.

Where To Go From Here
Read Chapter 3 and Chapter 4 in this manual.

Look at the chapter titlesin the rest of this manual to see which chapters you will need to read.

Find a sample XOP that would be a good starting point for your XOP and read that XOP's code.

Chapter 3

Development Systems

L@ Y= AT S S 65
XOPS N COABWAITION PrO......ccueeeie ettt 66
CFM XOP Projectsin CodeWarrior Pro 8..........cccceecvieeveieseese e 67
TAGEL SELUINGS. .. eeueeueeieeeeriert et r e 69
ACCESS PALNS ... s 70
RUNEIME SELLINGS....c.oiiieciece e 70
[O 1= 0 T RS 71
CICH+ LANQUAGE........eeeieieieeeeeieeee ettt nne 71
PPC PrOCESSOcctieteeitee sttt ettt sn et be e sbe e sae e saeesane s 71
Global OptiMiZatioNS........cccccveveeiiieereceee e 72
o O3 101 S 72
Debugging a CodeWarrior CFM XOP.........ccccoiieriiereieenesese e 73
Mach-O XOP Projectsin CodeWarrior Pro8...........ccccoeeeviieveieneece e 75
Debugging a CodeWarrior Mach-O XOP.........ccccceoivviiieeieiieie e 78
XOPS TN XCOUR.....eieeeeeeieeieee sttt sttt sttt seesreeeeseeereeneesaeeneenes 79
XOP Projectsin XCOUE.......cciiiiieieieceee sttt sttt st 80
XCOUE ProjeCt SEttNGSccueeiveiieeeese ettt s 83
XCOOE Crtt PrOJECES.....ccueeueeieeiesiiste sttt 84
XCOUE XOP PaCKAOEccveeueiiriisiesieieee et 85
Debugging an Xcode XOP.......cooeiiiice ettt 86
Other XCOOE NOLES.........coiireeiiciee sttt sre e 88
FOPEN FUNCLION ...t 88
HEID FILES ..ttt 88
T T To = (= | o U 88
Structures Defined in Parameter ListSoovvvevieveeciennseerese s 88
XOPSIN ViISUBI Ctt Bt 89
XOP ProjectSin Visual CH+ 6ocvvieeciecieceeicceee e 20
Visual CH++ 6 ProjeCt SEItiNGSc..ooveieeeeeeiriesie et 92

63

64

Chapter 3 — Development Systems

Debug Tab/General CaleJOrYoovrirererreieeeeenesesre e 92

C/C++ Tab/Code Generation Category........cccceveeeereeereereeseeseesenenns 92

C/C++ Tab/Preprocessor CateQOrYcveveieieerieseeeeseseeeesresreesens 92

Link Tab/General Calegorycoeerererierrereieeeesesie e 92

Link Ta/INPut CatEJONYccvrvirrereireieneeeeeeese e 92

RESOUICES Ta ...t 92

Debugging aVisual CH+ 6 XOP.......cccoiiiiririeee e 93

XOPsinVisual Ct+ 7 ((NET) cooiiiieieieeeeese e 94

XOP ProjectSin VisUal CHt 7 ..ocveeec et 95

Visual CH++ 7 Project SEiNGS.....ccviiieeiiiiece sttt 97

Debugging Properties..........ccviierireninerieeeeseses e 97

C/C++ Properties/General Categorycoovveveereeneenieesessesseesieeenns 97

C/C++ Properties /Code Generation Category.......cccocevvveeveesreseernenn. 97

Linker Properties/General Categorycoovvereereeeresenenieneeseeeenens 97

Linker Properties /INput CaleQOTYcererreiererenrereesseseeseeeeesiesne e 97

RESOUICES PrOPErtiES......occve et et 97

XOPSUPPOIT WaININGS.cveveteteneeeeeeiesiesiesie st s s s ssessessesseseeessessens 98

Debugging aVisual CH+ 7 XOP.......coceiiieeese et 98

WIING XOPS TN Chtoecccce ettt 99

Mixing C and CH+ COUE.......ccoueiriiieie e 99

Code ChangeS FOr Crt.......ciiiiiiiriesie et 99
USING CHt EXCEPLIONS.....oviieeeieiieeeiesie et 100
CH+ XOPS N COUEWAITION PrO.......civiiviieieieisiesesie s 101
CodeWarrior CFM Project SEttingS........ccoueererrereereeieeesesiesie s seeseeesaens 101
Using the new Operator in COdEWaITIOrccoovreereieeere e 101
Ct XOPS TN XCOOB....c.eeeieeieeieitieee ettt st s 102
CH+ XOPSIN ViISUA CH Bu.eveeiiieieieeeeeese et 102
CH+ XOPSIN VISUBI CHt 7.t 102

Chapter 3 — Development Systems

Overview

XOP Toolkit 5 includes sample X OPs and supporting files for the following development
systems:

Development System Operating System Vendor
CodeWarrior Pro 8.3 Mac OS9or Mac OS X | Metrowerks Corporation
Xcode 1.1 Mac OS X only Apple Computer
Visual C++ 6
Windows Microsoft
Visua C++ 7 (NET)

If you are using alater development system version, keep in mind that they may differ slightly
from what is described here.

On Macintosh an XOP is a shared library. On Windows it is adynamic link library (DLL). If you
are an advanced programmer, you can probably figure out how to use other devel opment systems.

As new development system versions are released, WaveMetrics creates updated XOP Toolkit
files and makes them available via anonymous FTP. For alist of WaveMetrics FTP sites, please
seel

http://www.wavemetrics.com/support/ftpinfo.html

The XOP Toolkit CD-ROM also contains an older X OP Toolkit version that work with old
versions of CodeWarrior aswell as Visual C++ 5. These should be used only as alast resort.

65

66

Chapter 3 — Development Systems

XOPs in CodeWarrior Pro

CodeWarrior Pro, published by Metrowerks Corporation, isa C and C++ development system
that can build programs for Macintosh and Windows. The XOP Toolkit includes support for
Macintosh development only.

XOP Toolkit 5 provides sample projects and support files for CodeWarrior Pro 8.3, the last
version of CodeWarrior that runs on both Mac OS 9 and Mac OS X. These samples and support
files should work in later versions of CodeWarrior, although minor tweaks may be necessary.

We recommend that you do not try to use earlier versions of CodeWarrior as earlier versions had
numerous problems, especially for Mac OS X development,.

Using CodeWarrior, you can compile both CFM (Code Fragment Manager) and Mach-O X OPs.
CFM and Mach-O refer to two executable file formats supported by Mac OS X. CFM isaso
supported by Mac OS 9. Igor Pro 4 supported CFM X OPs only while Igor Pro 5 supports both
CFM and Mach-O XOPs.

If Mac OS 9-compatihility or Igor Pro 4-compatibility is required, you must create a CFM X OP.
If you need to use Mac OS X frameworks (such as |OKit or hardware device drivers), you must
create a Mach-O XOP. If neither of these apply then you can create either. Creating a CFM XOP
isdlightly smpler. For further details on CFM vs Mach-O, see page 6.

The sampl e projects are provided as CFM projects except for VDT2 which isaMach-O project.
Both CFM and Mach-O versions of the XOPSupport library are provided.

Chapter 3 — Development Systems

CFM XOP Projects in CodeWarrior Pro 8

This section provides the background information needed to understand how to create CFM XOP
projects in CodeWarrior. For step-by-step instructions on creating a project, see Creating a New
Project on page 35 and Creating the New Project In CodeWarrior on page 36.

If you are unsure about settings for your project, you may find it handy to open your project and a
WaveMetrics sample project at the same time to compare settings.

We will use the WaveA ccess sample XOP as a case in point. The WaveAccess folder isinside the
IgorX OPs5 folder and looks like this:

O

2j =]

[waveAccess

[cws =

=
[[fi Wavedcoess Data
@ WaveACCRSS . MCp

WaveACCRSS XOp

=] Wavehcoess o
] Wavehccess.h
=] WaveAccess.r

E WaveALLESS FC

2 i v e e v

E WavesccessWinCustanm. ro

[Ei moode
«Jur] L

The CodeWarrior project files are inside the CW8 folder, to keep them separate from the files for
the other devel opment systems. The discussion assumes this arrangement. Note that the output
XOPfileisasointhe CW8 folder.

SIKl

67

Chapter 3 — Development Systems

The WaveAccess.mep file is the project file and contains the project settings. The WaveAccess
Datafolder contains data created by the compiler such as object code.

WaveA ccess.c contains the project source code while WaveA ccess.h contains the project headers.

WaveA ccess.r contains the XOP' s Macintosh resources. The files resource.h, WaveAccess.rc and
WaveA ccessWinCustom.rc are used on Windows only.

This screen shot of the project window shows the source files and libraries that are used in the
project.

O "= @ WaveArcess.mcp =c0F— (o=
ﬂ Wavehcoess - ; 4 @ 5
|/ Fites\ /Link order \ [Targets |
#| File | Code | Data [# |=
= & [, Sources i} 0« @[]
W 0l wavedccessc 0 o« =
L M wavehccessr na nia =l
= & [, Mac Libraries 0 1] =
W {5 CarbonLib 0] =
W {5 CarbenFrameworklib 0] =
= & [, AMSI Libraries 0 o =
w B MsL_all_Carbon Lib 0] =
= & [%j, lgor Libraries 0 1] =
@f {5 #0FSupport CFMLib 0 0 =l |
-
& files o 1) B

A CodeWarrior CFM XOP project is created from the CodeWarrior “ C++ Toolbox Carbon”
stationery and then configured as a“ shared library” project. The following sections discuss the
key project settings.

Chapter 3 — Development Systems

Target Settings

When you create a new project, CodeWarrior creates two targets: a debug target and afina
target. Each target has independent settings. To simplify matters we have created the sample
CodeWarrior projects with just one target.

|

WaveAccess settings ="="—"————————— H

E Target Settings Panels

E Target Settings

= Target

Target Settings
hocess Paths
Build Extras
Runtirme Settings
File Map pings
Source Trees

PPC Target
Property List

= Language Settings
C/C++ Language
C/C++ ‘Warnings
PPCAsM

Rez

= Code Generation
PPC Processor
PPC Disassermbler
Global Optimizations
= Linker

Maec 03 Packager
PPC 1 inketr

1]

] »

Target Name: | ‘Wavehccess

Linlcer:[Macintosh Power PC

Pre—linker:[Mone

o) [o) [o) ||

Post-linker:| None

Output Directory:

(Ehome-)
{Project}:

[5ave project entries using relative paths

Factory Settings

Revert Panel Bxport Panel...] [Import Panel...] Save

69

70

Chapter 3 — Development Systems

Access Paths

The Access Paths tell CodeWarrior which directories to search for included header files. In the
User Paths section “{ Project} :” would refer to the folder containing the project file. Since our
WaveAcces.h header fileis up one level from that folder, we have added “{ Project} ::” which
refers to the parent of the folder containing the project file, which is the WaveAccess directory.

{ Project} :::XOPSupport: refers to the XOPSupport folder which is at the same level asthe
WaveAccess folder in the IgorX OPs5 directory. We need this access path because we #include
XOPSupport header files.

We have created these access paths as project-relative (using the Add or Change buttons) so that
they will continue to work if we move the IgorXOPs5 folder to another location on our hard disk
or to another machine.

[[=———WaveArress settihgjs ="———————— &

=

E Target Settings Panels E Access Paths

= Target _ | 4| [&lways Search User Paths [Interpret DOS and Unix Paths
1:22:; ﬁeatttr::gs = Require Framework Style | ncludes
Build Extras H user Paths 2|
Runtime Jettings o B Projecth
File Mappings W I HProject) D HOPSUpport :]
Source Trees
PPC Target
Froperty List [+ |

[Language Settings A i |)
C/C++ Language
E/C++ 'Warnings [svstem Paths =1
PPCAzm W I Compiler} Mac0S Support
Rez W B HCampiler) MEL:]

= Code Generation
PPC Processor
PPC Dizassembler I~ |
Global Optimizations PRI | ¥

= Linker
Mac 05 Packager i Add Default Host Flags: - Add . Change... Remove
PR | inker il

[Factory Settings | | Revert Panel Export Panel.. | [ImportPanel.. | | save

Runtime Settings

In this pane you enter the path to your Igor Pro application file. When you debug your XOP,
CodeWarrior will launch Igor Pro. Sometimes after entering the path you need to close and
reopen the project or quit and restart CodeWarrior to make things work.

Chapter 3 — Development Systems

PPC Target
Note that the project type is Shared Library.

By convention, the XOP file name ends with “.xop”.

When Igor islaunched, it scans the Igor Extensions folder and subfolders for files of type IXOP.
If your CFM XOP file does not have thisfile type, Igor will not consider it to be an XOP.

The creator code is IGRO (last character is zero).

= WaveArrtess Settingls =——— H

E Target Settings Panels B PPC Target
= Target

Target Settinga
Acceas Paths
Build Extras File Mame: |Waveﬁcceaa.xup |
Runtime Settings

File Mappings Creator | IGRO

Source Trees

PPC Target Type

Property List

~ Language Settings

C/C++ Language

C/C++ Warninga

PRCAam

Rez

= Code Generation

PPC Processor [] Output Resources to Separate Flattened File

PPC Disassembler f I Azl

Global Optimizations Ly [Choose...

= Linker File Name: | | [clear
Mac 05 Packager

PPC | jinker

il »

Project [Shared Library i]

d

[Factory Settings] Revert Panel [Bxport Panel...] [Import Panel...] Save

C/C++ Language

We specify MacHeadersCarbon.h as the prefix file. Thisis a precompiled version of headers
including Apple' s Carbon API headers and the Metrowerks Standard C library (MSL) headers.

PPC Processor

In the sample X OPs, we specify structure alignment as “68K”, which means that fields are
aligned on two-byte boundaries. This guarantees that structures passed between Igor and the XOP
use the alignment required by the XOP Toolkit. See Structure Alignment on page 279 for
details.

72

Chapter 3 — Development Systems

Global Optimizations

For debugging, optimizations must be set to off. Otherwise the CodeWarrior debugger’ s behavior
is erratic. Even with optimizations off, the CodeWarrior debugger sometimes shows incorrect
values for variables.

When compiling afinal version, you might want to set optimizationsto Level 2. This might
provide increased speed. However it also sometimes unmasks compiler bugs or your own bugs
which were asymptomatic when compiling with optimizations off. So you should thoroughly
retest after compiling with optimizations on.

PPC Linker
The Main entry point must be set to main, the XOP’s main function.

The Initialization and Termination entry points must be set to __initialize and __terminate.
Failure to enter the initialization and termination entry points as shown can cause a crash when a
C++ XOP throws an exception.

Chapter 3 — Development Systems

Debugging a CodeWarrior CFM XOP
Here are the steps that you can take to debug a CFM XOP in CodeWarrior.

1

10.

If you are running on Mac OS 9, check the Extensions folder of your System folder. It should
contain afile called MetroNub, placed there by the CodeWarrior installer. If it is not there,
find MetroNub on the CodeWarrior Mac OS Tools CD-ROM and drag it into your
System:Extensions folder.

If you are running on Mac OS X, make sure that you are using CodeWarrior Pro 8.3 or later
and that you have the latest Developer Tools from Apple. CodeWarrior uses the GDB
debugger supplied with the devel oper tools. Prior to CodeWarrior 8.3 and OS X 10.3, there
were compatibility problems between CodeWarrior and GDB.

Quit Igor if it isrunning.
In CodeWarrior Pro, open your XOP project file.

Using the Edit menu, open the target settings window (e.g., WaveAccess Settings). In the
Runtime Settings pane, under the section Host Application, click the Choose button and find
your Igor Pro application file. Thisis the application that CodeWarrior will launch when you
choose Debug from the Project menu. If you have more than one copy of Igor Pro on your
hard disk, make sure to choose the right one. Sometimes after entering the path you need to
close and reopen the project or quit and restart CodeWarrior to make things work.

In the Global Optimizations pane, set the optimization to “ Off”. If optimization is on,
CodeWarrior will sometimes fail to stop at breakpoints or give bogus readouts of variables.

Click the Save button and then close the target settings window.

In the project window, in the "bug" column (the one under the green bug-like icon) click to
add a bullet for each source file that you might want to debug. The bullet indicates that the
compiler will generate debugging symbols for that file. Y ou may aswell turn debugging
symbolson for al of your C or C++ sourcefiles.

In the Project menu, choose Make. When the project has finished compiling, go into the
Finder and find the compiled XOP file. Make an alias for that file and drag the alias into the
Igor Extensions folder in the folder containing your Igor Pro application. Thisiswhere Igor
looks for XOPswhen it is launched. (If you are running Igor Pro 4, see The lgor Extensions
Folder On Macintosh on page 9).

Open one of your source files and find the point where you want to break. For example, if
you want to break when your XOP isfirst launched by Igor, open your main sourcefile (e.g.,
WaveA ccess.c), find the main routine, and set a breakpoint somewhere in that routine. To set
abreakpoint, click in the column that runs down the left edge of the source window, on line

73

74

Chapter 3 — Development Systems

11.
12.

13.

of source code where you want to break. CodeWarrior will add ared bullet to indicate that a
breakpoint has been set there.

Choose Project->Debug. CodeWarrior will launch the Igor application that you chose.

If the XOP adds a function to Igor, Igor will launch the XOP during Igor'sinitialization. If
you set a breakpoint in your main routine, you should break into the debugger at thistime. If
the XOP adds command line operations but no functions, Igor will not launch the XOP
during Igor'sinitialization.

If your breakpoint is not in your main function, do something that causes the source line
where you set the breakpoint to execute. For example, choose your XOP's menu item, invoke
its command line operation or invoke its function from the Igor command line.Y ou should
break into the debugger at thistime.

Chapter 3 — Development Systems

Mach-O XOP Projects in CodeWarrior Pro 8

The main reason to create a Mach-O binary XOP rather than a CFM XOPisif you need to use
Mach-O frameworks, such as Apple’ s 10Kit framework. Y ou can create a Mach-O XOP using
either Xcode or CodeWarrior. Mach-O XOPs run on Mac OS X only, not on Mac OS 9.

We expect that most CodeWarrior XOP development will use CFM, not Mach-O. For

simplicity’ s sake the CodeWarrior sample XOPs are all CFM X OPs (except for the VDT2 XOP
which uses I0Kit). However, if you want to use CodeWarrior to create aMach-O XOP, this
section explains how.

Here is how you would create a CodeWarrior Mach-O XOP project for a project named MyXOP:

In CodeWarrior, choose File->New. This displays the New window.

N

Enter a project name (e.g., MyXOP.mcp) and set the project location (e.g.,
/1gorXOPs5/MyX OP/CW8).

Select Mac OS C++ Stationery from thelist.

Click OK. This displays the New Project window.

Select “Mac OS X Mach-O"->"Mac OS Toolbox”->" C++ Toolbox Mach-O”.
Click the OK button. This creates the project.

Remove the sample source files (SimpleAlert.c, SimpleAlert.rsrc, SimpleAlert.plc) from the
project.

N o o b~ w

8. IntheFinder, delete all files whose names start with SimpleAlert from the
/lgorX OPs5/MyX OP/CWS8 folder.

9. Copy thefile/IgorXOPs5/VDT2/CW8/VDT2.plc to your project folder
(IgorXOPs5/My X OP/CW8). Rename this file as MyXOP.plc.

10. In CodeWarrior, open MyXOP.plc and change all of the referencesto VDT2 to references to
MyXOP.

The project as created by CodeWarrior contains two targets, a debug target and afinal target. We
will discuss adjusting the settings for the debug target only. If you want to maintain two targets,
you would need to make the same settings changes for the final target.

75

76

Chapter 3 — Development Systems

11. Open the project settings window and enter the following settings:
Target
Target Settings
Target Name: MyXOP Debug
Linker: Mac OS X PowerPC Mach-O
Access Paths
Click in the User Paths section to activateit.

Click the Add button and add the /IgorX OPs5/My X OP folder as a project-
relative access path. The resulting path should be displayed as.
{Project}::

Click the Add button and add the /IgorX OPs5/X OPSupport folder as a
project-rel ative access path. The resulting path should be displayed as.
{Project}:::XOPSupport
Click the System Paths section to activateit.
Click the Add button and add
{ Compiler} /MacOS Support/Universal/Interfaces/Rincludes
as a CodeWarrior-rel ative access path.
Runtime Settings
Click the Choose button and find your Igor Pro 5 application file.
PPC Mac OS X Target
Project Type: Bundle Package
Bundle Name: MyX OP.xop
HFS Creator: IGRO (last character is zero)
HFS Type: BNDL
L anguage Settings
C/C++ Language
Prefix File: MSL MacHeadersMach-O.h

C/C++ Warnings: Uncheck all except Unused Variables and Extended Error
Checking.

Rez
Prefix File: MyXOPPrefix.r (You will create thisfile later.)

Chapter 3 — Development Systems

12
13

14

15
16

17
18

19

20

21

Code Generation
PPC CodeGen Mach-O
Sruct Alignment: 68K (See page 279 for details.).
Linker
Mac OS Packager
Use Mac Packager: Checked
Create alias to Classic executable: Unchecked
Create Pkglnfo file: Checked
Package Creator Type: IGRO (last character is zero)
Package File Type: IXOP
PPC Mac OS X Linker
Export Symbols: Use “.exp” file
Main Entry Point: _main
. Save the project settings and close the project settings window.

. In the project window, click the Sources icon and then choose Project->Add Files, and add
the MyXOP.c, MyXOP.r and MyXOP.plc filesto al targets.

. Using Project->Add Files, add the console.stubs.c file to all targets. Thefileisin:
IMetrowerks CodeWarrior/MSL/MSL_C/MSL_MacOS/Src/
. Select the crtl.o0 (the C runtime library for an application) icon in the project window.

. Using Project->Add Files, add the file bundlel.o (the C runtime library for a bundled
package) to all targets. This should be in /usr/lib on your OS X volume.

. Control-click the crtl.0 icon and choose Clear to remove it from the project.

. Using Project->Add Files, add to all targets the XOPSupport Mach.Lib file from
/1gorX OPs5/X OPSupport/CW8.

. Create anew text file named MyX OPPrefix.r and storeit in the /IgorX OPs/MyX OP/CW8
folder. Enter the following text in the file:

#define TARGET RT MAC MACHO
. Choose Project->Make.

When you successfully compile and link for the first time, CodeWarrior will create afile
named MyXOP.mcp.exp in the same folder as the CodeWarrior project.

. Edit the MyXOP.mcp.exp file and remove all entries except for the entry for " _main". We
now need to force CodeWarrior to relink.

77

78

Chapter 3 — Development Systems

22. Choose Project->Remove Object Code and remove object code from all targets.

23. Choose Project->Make to rebuild the XOP.

24. In the Finder, locate /IMyX OP/ICW8/MyXOP.xop. Thisis your compiled X OP package.
25. Make an alias from MyXOP.xop and put the aliasin the Igor Extensions folder.

Y ou are now ready to test your X OP.

Debugging a CodeWarrior Mach-O XOP

Debugging a CodeWarrior Mach-O XOP works the same as debugging a CFM XOP. See
Debugging a CodeWarrior CFM XOP on page 73.

Chapter 3 — Development Systems

XOPs in Xcode

Xcode is Apple’' s development system for Mac OS X. It is provided by Apple at no charge as part
of their devel oper tools package. Xcode runson Mac OS X 10.3 or later and generates Mach-O
executables which can run on Mac OS X only.

As of thiswriting, Appleis shipping Xcode version 1.1. Since Xcode is a new development
system, we recommend that you update to the current version of Xcode and Mac OS X before
using it.

Igor Pro 4 does not support Mach-O XOPs, so you can use Xcode only for XOPs that will run
with Igor Pro 5.00 or later. Y ou also need XOP Toolkit 5 or later.

XOP Toolkit 5 provides sample projects and support files for Xcode 1.1. These samples and
support files should work in later versions of Xcode, although minor tweaks may be necessary.

If you have not already done it, now would be a good time to read the X code help (choose Help-
>Xcode Help) so that you have an understanding of the basic X code concepts.

79

Chapter 3 — Development Systems

XOP Projects in Xcode

This section provides the background information needed to understand how to create XOP
projectsin Xcode. For step-by-step instructions on creating a project, see Creating a New
Project on page 35 and Creating the New Project In Xcode on page 41.

We will use the WaveA ccess sample XOP as a case in point. The WaveAccess folder isinside the
IgorXOPs5 folder and looks like this:

® O 6 | WaveAccess (]
Marmme
| CWE
=] resource.h
7 VC6
| vC7
| WaveAccess.c
| WaveAccess.h
| WaveAccess.r
| WaveAccess.rc
=] WaveAccasswinCustom.rc
| Xrode
[F build
WaveAccess.xop
» [7 English.lproj
=] Exports.exp
_ Info.plist
_ version.plist
lh| WaveAccess_Prefix.pch
™ waveAccess.xcode

R RISV

Chapter 3 — Development Systems

The Xcode project files are inside the X code folder, to keep them separate from the files for the
other development systems. The discussion assumes this arrangement and we recommend that
you useit. Note that the compiled XOP isin the WaveA ccess/X code/build folder.

The build and English.Iproj folders as well as the Info.plist, version.plist and
WaveAccess Prefix.pch files are created by Xcode. Y ou may see other X code-created folders
and files.

WaveA ccess.xcode is the project file and contains the project settings. (Actually it is a package
folder, not afile.) The build folder contains data created by the compiler such as object code as
well as the compiled XOP.

WaveA ccess.c contains the project source code while WaveA ccess.h contains the project headers.

WaveA ccess.r contains the XOP' s Macintosh resources. The files resource.h, WaveAccess.rc and
WaveA ccessWinCustom.rc are used on Windows only.

The Exports.exp fileis aplain text file that tells X code what routines the X OP needs to “export”.
In order for Igor to find afunction in the XOP by name, it needs to be exported. The only
function that needs to be exported for an XOP is main, so the Exports.exp file will be the same
for al XOPs.

WaveAccess.xop appearsto be afile but it isrealy a* package’. If you control-click and and
choose Show Package Contents, you see what isinside:

® O O {i&] WaveAccess.xop (-
8 items, 52.25 GB available
~ Name
v L_.: Contents
_| Info.plist
v |7 MacOs
M WaveAccess
_| Pkginfo
\ 4 L,_: Resources
I~ L,_i English.lproj
WaveAccess.rsrc

81

82

Chapter 3 — Development Systems

The layout of the package is as defined by Apple for a*“ packaged bundle’. Here “bundle’ is
Appl€e sterm for aplug-in.

The package is created automatically by X code when you compile the X OP. The actual
executable codeis in the file WaveAccess. The other files contain data describing the package
and resources.

This screen shot of the project window shows the source files and libraries that are used in the
project.

806 9 WaveAccess (-

Wi (< 1Jﬁhiﬂﬁ\,iﬁ.xf ™ »

1 of 7 selected
Groups & Files 1|
¥ % WaveAccess =]
;l] Source
WaveAccess_Prefix.pch
Wavebrcess.c
WaveAccess.r

File Name & ||
Carbon.framework
InfoPlist.strings

libXOPSupport.a

Pkglinfo

Wavebrccess.c

WaveAcCcess.r
WaveAccess_Prefix.pch

L
(H]
L
LE]

Iz B I E D E S

¥| | Resources

Info.plist
p [£] InfoPlist.strings
| External Frameworks and L

p = Carbon.framework
= libXOPSupport.a
b-| | Products

v (@) Targets

v o Executables
<% LaunchCFMApp ¥ |

p B Errors and Warnings v y

Chapter 3 — Development Systems

The WaveAccess Prefix.pch fileis automatically created by X code and used to speed up
compilation by pre-compiling headers.

Theinfo.plist and InfoPlist.strings files are automatically created by X code and used to store
“meta-information” such as the X OP package' s file type and creator codes.

The file Carbon.framework makes Apple’' s Carbon API accessible to the XOP. LibXOPSupport.a
isthe WaveMetrics XOPSupport library.

LaunchCFMApp is a system program that launches Code Fragment Manager applications. Igor
Proisa CFM hinary executable. Xcode creates Mach-O binary executables. Xcode itself is not
capable of launching CFM executables directly, so in order to debug the X OP, we need to use
LaunchCFMApp to launch Igor Pro.

Xcode Project Settings

If you select the Targets->WaveAccessicon in the Xcode Groups & Files pane and then choose
Project->Get Info, and then click the Build tab, X code displays the project settings relating to
compiling and linking the XOP. If you click the Customized Settings in the “ Collections’ tray,
you see those settings which have non-default values.

806 Target "WaveAccess” Info

! General | Build | Rules Properties }

Customized Settings Value
@ Header Search Paths of..{XOPSupport
"Collections | @ Library Search Paths ../../XOPSupport/Xcode
£ Customized Settings & Framework Search Paths
[# Commen Settings @ Library Style
v~ General @ Exported Symbols File .JExports.exp

l @ Search Paths @ Symbol Ordering Flags

@ Versioning @ Other Linker Flags
inki Product Name WaveAccess
@ Linking @ Prod
@ Packaging @ Wrapper Extension xop
@ Deployment @ Force Package Info Generation [
|| ¥ GNU C/C++ Compiler @ Info.plist File Infa.plist
@ Language @ Installation Path $(HOME)/Library/Bundles
H Code Generation @ Enable Trigraphs O .
A Warnings @ Prefix Header WaveAccess_Prefix.pch 3
@ Preprocessing =
v/ 7 Rez R))) _

L Settings in a target override the corresponding default settings. To define a
[@ Language setting that refers to the default setting, use "3ivalue)' in the build setting value.
@ Resource Generation

Preprocessin =
gw p. ¢ (+) (" Hide Collections) [~ Show Help)
arnings
@ Binary Source Files a ") 22 items
|

83

84

Chapter 3 — Development Systems

The Header Search Paths setting allows #include statements to find the X OPSupport header files.
The path is specified relative to the WaveA ccess.xcode project file.

The Library Search Paths setting allows the X code version of the X OPSupport library to be found.

Exported Symbols Files. Specified as “./Exports.exp”, meaning that Xcode isto look for the file
Exports.exp in the project folder. Exports.exp declares the main function to be exported (i.e.,
visible to Igor Pro by name). Thisfile will work for any XOP so if you create a new Xcode XOP,
you can just duplicate the Exports.exp file from an existing Xcode X OP.

Wrapper Extension: Specified as“.xop”. Igor identifies Mach-O X OP packages by the .xop
extension on the package folder’ s name.

Force Package Info Generation: Checked. We're not really sure what this does and Apple's
documentation is of little help.

Prefix Header: Thisis automatically set by Xcode when the project is created to

“WaveAccess Prefix.pch”, afile which Xcode automatically creates. The file determines which
header files are pre-compiled and stored in binary form with the project data to speed up
compilation.

OTHER_REZFLAGS Setto “-i .././XOPSupport -d TARGET_RT_MAC_MACHOQ". This
specifies flags to pass to the Rez compiler when the .r file is compiled. The -i part allows #include
statements to find the X OPResources.h file in the XOPSupport folder. The -d part predefines the
symbol TARGET_RT_MAC_MACHO. This symbol is used in an ifdef in the XOPResources.r
fileto set avalue (DEV_SYS_CODE) used in the XOPI resource in WaveAccess.r. Igor inspects
the XOPI resource at launch time to see if the XOP is aMach-O binary. Without this setting, the
XOP will not work. Note that “MACHQO” ends with the letter O, not the number zero.

If you click the Propertiestab in the Target Info window, X code displays the project properties,
including the project type (IXOP), project creator (IGRO) and version. These values are stored by
Xcode in the Info.plist file which winds up in the XOP package.

The project type of I XOP sets the type of the XOP package as specified in Info.plist. It does not
set the file type of the executable file, WaveAccess, which isinside the XOP package. Itis
important that the executable file’ stype not be set to I XOP as this would cause Igor to think that
it was a CFM XOP.

Xcode C++ Projects

If your XOP's main fileisa C++ file (.cp or .cpp) rather than a C file (.c), you need to make a
change. When compiling C++, Xcode requires that the main function return an int. Open your
main .cpp file and change the main function from:

HOST IMPORT void
main (IORecHandle ioRecHandle)

Chapter 3 — Development Systems

to:

HOST IMPORT int
main (IORecHandle ioRecHandle)

Find the declaration of your main function and change it also. The declaration will be either in
your main .cpp fileor in a.h file such.

Xcode XOP Package

The XOP package folder should appear in the Finder asif it were an XOP file and you should
have to control-click it and choose Show Package Contents to see what the package folder
contains. However, after compiling in Xcode, the X OP package incorrectly appears as afolder.
Apple s documentation on thisis unclear and figuring out how to make it work has been
complicated by changesin the behavior of the Finder from one version of Mac OS X to another.
Sometimes arestart is required to get the Finder to notice changes to the package.

We found a technique to work around the problem. It consists of putting afile named Pkglnfo
into the package. Pkglnfo tells the Finder that the folder is a package and specifies the file type
which the Finder uses to determine which icon to use to represent the package. Thistechniqueis
obsolete, according to Apple’ s documentation, but we have found no other way to get it to
reliably work.

In order to automatically put the Pkginfo file in the package, we added a“New Copy Files Build
Phase” to the Targets->WaveA ccess->Copy Filesicon. It makes a copy of the Pkglnfo filein the
XOPSupport folder and puts the copy in the output package folder. Here are the steps we used:

1. Inthe Groups & Fileslist, select the WaveA ccess->Source icon.

2. Choose Project->Add Files and add /IgorX OPs5/X OPSupport/Pkglnfo. In the resulting
dialog, choose Relative to Project from the Reference Type popup menu and click Add.

Select the Targets->WaveAccess icon.

Choose Project->New Build Phase->New Copy Files Build Phase. In the resulting Copy Files
Info window, select Wrapper from the Destination popup menu, enter Contents in the Path
edit box, and then close the window.

5. Drag the WaveA ccess->Source->Pkglnfo icon into the Targets->WaveA ccess->Copy Files
icon.

Choose Build->Build to rebuild the target.
In the Finder, close and reopen the /WaveA ccess/X code/build folder to force a Finder refresh.

8. Now the WaveA ccess.xop folder should appear like afile with an XOP icon. However, you
may need to restart your computer to get the Finder to use the correct icon.

85

86

Chapter 3 — Development Systems

Debugging an Xcode XOP

Some additional setup is required to debug your XOP. Y ou need to tell Xcode what program
hosts your XOP. And because Igor Pro isa CFM application which can not be executed directly
from Xcode, the setup is abit complicated. Y ou will have to tell X code to launch the system's
LaunchCFMA pp program and then tell LaunchCFMA pp to launch Igor Pro.

Here's how you would do after opening the WaveA ccess sample project in Xcode:

1

10.

First you need to determine the path to your LaunchCFMApp file. On our systemiit islocated
at:

/System/Library/Frameworks/Carbon.framework/V ersions/A/Support/L aunchCFM A pp
Thiswill probably work for you too. If not, you can search for LaunchCFMApp in the Finder.
In the Xcode Groups & Files list, select the WaveAccess icon.

Choose Project->New Custom Executable.
Enter LaunchCFMA pp as the Executable Name.

Click the Choose Button and find your LaunchCFMApp file.
Click Finish.

In Xcode 1.1 there is a bug which causes the icon added to the Executables group to be
named “ Executable” instead of LaunchCFMApp. To fix this, control-click the Executables-
>Executable icon, choose Rename, and change the name to LaunchCFMA pp.

In the Groups & Fileslist, double-click Executables->LaunchCFMA pp.

Under Launch Arguments, click the + icon and enter the full path to your Igor Pro application
in double-quotes (e.g., "/ApplicationsWaveMetricg/Igor Pro Folder/Igor Pro").

Close the Executable window.

Choose Build->Build.

When the project compilation is finished, go into the Finder and find the compiled XOP
(/WaveA ccess/build/WaveA ccess.xop).

Make an dlias for that XOP and drag the alias into the Igor Extensions folder in the folder
containing your lgor Pro application. Thisiswhere Igor looks for XOPs when it is launched.
(If you are running Igor Pro 4, see The Igor Extensions Folder On Macintosh on page 9).

In Xcode, open the WaveA ccess->Source icon and select your main source file (e.g.,
WaveAccess.c) and set a breakpoint at the start of the main function. Click in the lefthand
gutter to set the breakpoint.

Choose Debug->Debug Executable. X code will launch the LaunchCFMApp program which
will launch your Igor Pro program.

Chapter 3 — Development Systems

11. If your XOP adds one or more external functions, Igor will launch it at thistime, in which
case you should break into X code at the point in the main function where you set the
breakpoint. Y ou may have to click the X code debug window to activate it.

12. If your XOP does not add external functions, do something to cause Igor to launch it, such as
invoking your external operation from Igor's command line. Y ou should break into X code at
this point. Y ou may have to click the X code debug window to activate it.

We have found that sometimes when you try to quit Igor after debugging in Xcode, Igor does not
quit and you have to go into Xcode and chose Debug->Stop Debugging.

87

88

Chapter 3 — Development Systems

Other Xcode Notes

fopen Function

In Xcode, the fopen function in the standard file package expects to receive a POSIX (i.e., Unix)
path. In CodeWarrior, fopen expects to receive an HFS (i.e., Mac OS) path. The XOPSupport
XOPOpenFile function, which calls fopen, takes care of this problem. However, if you have used
fopen in your own function under CodeWarrior, you will need to change your function to pass a
POSIX path.

Help Files

An XOP's help file must be placed in the same folder as the XOP itself. In Igor Pro 5.00, there
was a bug which prevented Igor from finding an Xcode XOP' s help file. This prevented Igor
from finding XOP help for display in Igor’ s Help Browser, among other problems. The bug was
fixed in Igor Pro 5.01. Since we are aways fixing bugs, it is agood ideato update to the latest
version of Igor Pro.

Balloon Help

Xcode does not support balloon help resources. If your .r file includes Balloons.r you must
remove the #include statement. If your .r file defines “hmnu’ or ‘hdlg’ resources, you must
remove them.

Structures Defined in Parameter Lists
Xcode does not like structures that are defined in parameter lists, like this:

static int

WAGetWaveInfo (

struct
waveHndl w;
Handle strH;

}* p)
So we changed the XOP samples to define the structure separately, like this:

struct WAGetWaveInfoParams {
waveHndl w;
Handle strH;

typedef struct WAGetWaveInfoParams WAGetWaveInfoParams;

static int
WAGetWaveInfo (WAGetWaveInfoParams* p)

Chapter 3 — Development Systems

XOPs in Visual C++ 6

Visual C++ 6, published by Microsoft, Inc., isa C and C++ development system that can build
programs for Microsoft Windows. Visual C++ 6 runs on Windows and produces Windows X OPs.

Visual C++ 6 comesin standard (cheap), professional (expensive) and enterprise (very expensive)
editions. The standard edition is fine for XOP devel opment.

Microsoft is now shipping Visual C++ 7 (called Visual C++ .NET). If you go to buy Visua C++,
you will no doubt find Visual C++ .NET. However, Visual C++ 6 is still supported for XOP
development.

XOP programming does not require MFC (Microsoft Foundation Class). However, the Visua
C++ 6 resource editor creates resource script files that refer to an MFC header file. Therefore, if
you did not install MFC when you installed Visual C++ 6, you need to do the following steps.

1. Findyour "VC98" folder. Thisisusually located at:

C:\Program Files\Microsoft Visua Studio\VC98
2. If your VC98 folder already contains an MFC folder, then you should not need the remaining
steps.
Create anew folder named "MFC" in your VC98 folder.
Create a new folder named "Include” inside the MFC folder.

Find the file "afxres.h" from on your Visual C++ 6 CD-ROM and copy it to the newly created
VC98\MFC\Include folder.

89

Chapter 3 — Development Systems

XOP Projects in Visual C++ 6

This section provides the background information needed to understand how to create XOP
projectsin Visual C++ 6. For step-by-step instructions on creating a project, see Creating a New
Project on page 35 and Creating the New Project In Visual C++ 6 on page 45.

We will use the WaveA ccess sample XOP as a case in point. The WaveAccess folder isinside the
IgorXOPs5 folder and looks like this:

& c\wWorkxoPDew\ . [l]

File Edit “iew Favorite ™
=Hock v = v (1| *

Naine

1 Cws . ey »
CIVCE File Edit “iew Fawo
C1wey #=Back v = v [5] | ?|Links ?
[*%code

Mame ¢

EdWavescoess.dsp |
@0 VW aveMicess. dsw
WaveAc:c:ess.xnp

| I -l

3 ohject(s) 197 KB A My (

@ resource. b

@ Wavehooess. o

@ Wavedooess. h
Wiawedooess.r
WaveACoess. o
YWaveAccessWinCustom.rc

The Visual C++ 6 project files are inside the VC6 folder, to keep them separate from the files for
the other devel opment systems. The discussion assumes this arrangement and we recommend that
you use it. Note that the compiled XOP is in the WaveA ccess/V C6 folder.

WaveAccess.dsp isthe Visual C++ 6 project file and WaveAccess.dsw isthe Visual C++ 6
workspace file. To open the project, double-click the workspace file. Y ou may see other Visual
C++ 6-created folders and files. They contain data created by Visual C++ 6, such as compiled
object code. Only the .dsp and .dsw files are essential for recreating the project.

WaveA ccess.c contains the project source code while WaveA ccess.h contains the project headers.

Chapter 3 — Development Systems

WaveAccess.rc isthe main resource file. 1t #includes resource.h (created by Visual C++), and
WaveA ccesswWinCustom.rc (created by the XOP programmer). WaveA ccess.rc contains standard
Windows resources that are editable using the Visual C++ resource editor.

WaveA ccessWinCustom.rc contains X OP-specific resources that you edit as text. |gor examines
these custom resources to determine what operations, functions and menus the XOP adds, among
other things.

WaveA ccess.r contains the Macintosh resources and is not used on Windows.

This screen shot of the workspace window shows the source files and libraries that are used in the
project.

i Workspace — E

.Wurkspace " e icoess' | project’s)

=8 WaveAccess files
=23 Source Files

YWaveACCeSs.C

Wavehcoess.rc

------ 3 Header Files

------ [Resource Files

------ IGOR.lik

------ »OFSupport lib

al | B
B8 Classvi... I Fesourc. .. I File/iew

The project is set up to compile either a debug version or arelease version of the XOP. Y ou
choose which will be built by choosing Build->SetActive Configuration. Both of these
configurations create an X OP with the same name (e.g., WaveA ccess.xop). During devel opment,
you will normally compile using the debug configuration. Once your XOP isin final form, you
may want to try the release configuration to seeiif it runs significantly faster. The downside of
switching to the release configuration is that switching sometimes unmasks programmer or
compiler bugs that you might not catch. So you should thoroughly retest after compiling the
release configuration.

91

92

Chapter 3 — Development Systems

Visual C++ 6 Project Settings

If you select the Project->Settings, Visual C++ 6 displays the project settings dialog. Hereisa
discussion of the significant settings which need to be changed from the default. If you change a
setting, in most cases you should change it for both the debug and rel ease configurations.
Debug Tab/General Category

Executable for debug session: Enter the path to your Igor.exe application file. Visual C++ will
launch Igor when to debug your XOP.

C/C++ Tab/Code Generation Category

Use runtime-library: Single-Threaded. We have not tried using the multi-threaded library and we
don’'t know its ramifications.

Struct member alignment: 2 Bytes. This guarantees that structures passed between Igor and the
XOP use the alignment required by the XOP Toolkit. See Structure Alignment on page 279 for
details.

C/C++ Tab/Preprocessor Category

Additional include directories: ..\.\X OPSupport. Allows #include statements to find the
XOPSupport header files. The path is specified relative to the WaveA ccess.dsp project file.

Link Tab/General Category

Output file name: WaveA ccess.xop. The normal Visual C++ arrangement is to have the output
file created in the Debug or Release folder created by Visual C++ inside the project folder
(WaveAccess\V C6). However we set up both the debug and release configurations to create the
output file in the project folder so that a shortcut placed in the Igor extensions folder will always
refer to the last compiled version.

Object/library modules: version.lib must be added to the default list of libraries.

Link Tab/Input Category

Ignorelibraries: libcd.lib.

Resources Tab

Additional include directories: ..\.\X OPSupport. Allows #include statements to find the
XOPResources.h file. The path is specified relative to the WaveA ccess.dsp project file.

Chapter 3 — Development Systems

Debugging a Visual C++ 6 XOP
Here are the steps that you can take to debug a Visual C++ 6 XOP.

A W D PP

Open the workspace (e.g., WaveAccess.dsw) in Visual C++ 6.
Use Build->Set Active Configuration to activate the debug configuration of the project.
Build the XOP using the “Build <XOP Name>" item in the Build menu.

On the desktop, create a shortcut from the executable XOP file (e.g., WaveAccess\V C6\
WaveA ccess.xop) that you just built and put the shortcut in the Igor Extensions folder.

Back in Visual C++ 6, open your main source file (e.g., WaveAccess.c), and set a breakpoint
at the start of the main function. Press F9 to set a breakpoint.

Press F5. Thiswill launch Igor Pro.

If your XOP adds one or more external functions, Igor will launch it at thistime, in which
case you should break into Visual C++ at the point in the main function where you set the
breakpoint.

If your XOP does not add external functions, do something to cause Igor to launch it, such as
invoking your external operation from Igor's command line. Y ou should break into Visual
C++ at this point.

93

94

Chapter 3 — Development Systems

XOPs in Visual C++ 7 (.NET)

Visua C++ 7, published by Microsoft, Inc., isa C and C++ development system that can build
programs for Microsoft Windows. It is better known as Visual C++ .NET. Visual C++ 7 runson
Windows and produces Windows X OPs.

Visual C++ 7 comesin standard (cheap), professional (expensive) and enterprise (very expensive)
editions. The standard edition is fine for XOP devel opment.

Chapter 3 — Development Systems

XOP Projects in Visual C++ 7

This section provides the background information needed to understand how to create XOP
projectsin Visual C++ 7. For step-by-step instructions on creating a project, see Creating a New
Project on page 35 and Creating the New Project In Visual C++ 7 (.NET) on page 49.

We will use the WaveA ccess sample XOP as a case in point. The WaveAccess folder isinside the
IgorXOPs5 folder and looks like this:

&= CiworkxoPDew:. .. [l =]

File Edit “iew Favorite ™
“=Eock v = v |

RElE - & cworkwxoprDe . [lj[=] E3
E%ﬂ File Edit “iew Favor™
CIwe? EEack v = v [2
(¥code
Mame ¢

@resuurce.h ; i
6] WaveAccess.c lWaveAccess. sin .
h] WaveAccass. h Edwavehccess voproj

' FElwWaveAccess xop

WaweAooess.r
Wawvedooess. ro
WavedcoccessWinCustom. rc

«| | i

3 ohject(s) 1BAKB hZ My (

The Visual C++ 7 project files are inside the VC7 folder, to keep them separate from the files for
the other development systems. The discussion assumes this arrangement and we recommend that
you use it. Note that the compiled XOP isin the WaveAccess/VC7 folder.

WaveAccess.veproj isthe Visual C++ 7 project file and WaveAccess.gn isthe Visual C++ 7
“solution” file. To open the project, double-click the solution file. Y ou may see other Visual C++
7-created folders and files. They contain data created by Visual C++ 7, such as compiled object
code. Only the .vcproj and .sin files are essential for recreating the project.

WaveA ccess.c contains the project source code while WaveA ccess.h contains the project headers.

96

Chapter 3 — Development Systems

WaveAccess.rc isthe main resource file. It #includes resource.h (created by Visual C++), and
WaveA ccesswWinCustom.rc (created by the XOP programmer). WaveA ccess.rc contains standard
Windows resources that are editable using the Visual C++ resource editor.

WaveA ccessWinCustom.rc contains X OP-specific resources that you edit as text. |gor examines
these custom resources to determine what operations, functions and menus the XOP adds, among
other things.

WaveA ccess.r contains the Macintosh resources and is not used on Windows.

This screen shot of the Solution Explorer window shows the source files and libraries that are
used in the project.

Solution Explorer - WaveAccess E

B a Sl:uurc:e F|Ies
o [#] WavehAcoess.c
Wavehcoess.rc

----- [Header Files
----- [Resource Files
----- IGOR ik

----- XOPSupportlib

The project is set up to compile either a debug version or arelease version of the XOP. Y ou
choose which will be built choosing Build-> Configuration Manager. Both of these
configurations create an X OP with the same name (e.g., WaveA ccess.xop). During devel opment,
you will normally compile using the debug configuration. Once your XOP isin final form, you
may want to try the release configuration to see if it runs significantly faster.

Chapter 3 — Development Systems

Visual C++ 7 Project Settings

If you choose View->Solution Explorer and then right-click the WaveAccess icon and then
choose Properties, Visua C++ 7 displays the project settings. Here is adiscussion of the
significant settings which need to be changed from the default. If you change a setting, in most
cases you should change it for both the debug and release configurations.

Debugging Properties

Command: Enter the path to your Igor.exe application file. Visual C++ will launch Igor when to
debug your XOP.

C/C++ Properties/General Category

Additional include directories: ..\.\X OPSupport. Allows #include statements to find the
XOPSupport header files. The path is specified relative to the WaveA ccess.veproj project file.

C/C++ Properties/Code Generation Category

Runtime Library: Single-Threaded. We have not tried using the multi-threaded library and we
don’t know its ramifications.

Sruct member alignment: 2 Bytes. This guarantees that structures passed between Igor and the
XOP use the alignment required by the XOP Toolkit. See Structure Alignment on page 279 for
details.

Linker Properties/General Category

Output file name: WaveA ccess.xop. The normal Visual C++ arrangement is to have the output
file created in the Debug or Release folder created by Visual C++ inside the project folder
(WaveAccess\V C7). However we set up both the Debug and Release configurations to create the
output filein the project folder so that a shortcut placed in the Igor extensions folder will always
refer to the last compiled version.

Linker Properties/Input Category

Additional Dependencies: version.lib must be added to the default list of libraries.
Ignorelibraries: libcd.lib.

Resour ces Properties

Additional include directories: ..\.\X OPSupport. Allows #include statements to find the
XOPResources.h file. The path is specified relative to the WaveA ccess.vcproj project file.

97

98

Chapter 3 — Development Systems

XOPSupport Warnings

When you build an XOP in Visua C++ 7, you may see LNK4204 warnings saying that
XOPSupport.lib is missing debugging information. This is of no consequence unless you want to
step into X OPSupport routines while debugging. In that case, you can fix the problem by opening
IgorX OPs5\X OPSupport\V C7\AX OPSupport.sin in Visual C++ 7 and rebuilding the XOPSupport
library.

Debugging a Visual C++ 7 XOP
Here are the steps that you can take to debug a Visual C++ 7 XOP.

Open the solution (e.g., WaveAccess.sln) in Visual C++ 7.
Use Build-> Configuration Manager to activate the debug configuration of the project.
Build the XOP using the Build <XOP Name> item in the Build menu.

On the desktop, create a shortcut from the executable XOP file (e.g., WaveAccess\V C7\
WaveA ccess.xop) that you just built and put the shortcut in the Igor Extensions folder.

A w D P

5. Back in Visual C++ 7, open your main source file (e.g., WaveAccess.c), and set a breakpoint
at the start of the main function. Press F9 to set a breakpoint.

6. PressF5. Thiswill launch Igor Pro.

7. 1f your XOP adds one or more external functions, Igor will launch it at thistime, in which
case you should break into Visual C++ at the point in the main function where you set the
breakpoint.

8. If your XOP does not add external functions, do something to cause Igor to launch it, such as
invoking your external operation from Igor's command line. Y ou should break into Visual
C++ at this point.

Chapter 3 — Development Systems

Writing XOPs in C++

Writing an XOP in C++ is not significantly different from writing it in C. Depending on the
platform that you are writing for and your development system, you may need to perform afew
additional steps, as we outline below.

Mixing C and C++ Code

In general, your C++ XOP code will use XOPSupport routines or other functions that obey the C
calling convention. To use a C routine in your C++ code, you must use the extern "C" declaration
when declaring C routine. For example, if the C function foo is declared inits original C file as:

void foo(int 1) ;

you need to add to any C++ file that contains a call to the function the following declaration:

extern "C" void foo(int 1i);

To simplify the process, header files for most libraries, including the XOPSupport headers, have
the following structure:

#ifdef cplusplus
extern "C" {
#endif

file definitions, declarations and prototypes

#ifdef cplusplus

}

#endif

This structure ensures that when the header fileisincluded in a C++ module, it automatically
contains proper extern declarations for al of its C functions. Because the X OPSupport headers
have this structure, you don't need to worry about extern declarations when you use XOPSupport
routinesin your C++ files.

Code Changes For C++

A regular .c source file may compile without errors using the C compiler. If you try to compile
the file again after saving it with the .cpp suffix and changing the compiler settings to activate the
C++ compiler, you may get several error messages. These errors are typically associated with
stricter type checking rules under C++. For example,

float *fp= WaveData (p->waveHandle) ;

99

Chapter 3 — Development Systems

will generate an error: illegal implicit conversion from 'void *' to 'float *'. To eliminate the error
you should make the explicit conversion:

float *fp= (float *)WaveData (p->waveHandle) ;

Using C++ Exceptions

Y ou can use standard C++ exceptionsin your XOPs. To do so, you will have to set the
appropriate itemsin your project settings. These are discussed in the following sections.

In implementing C++ exceptions, it is very important that your final catch block aways be before
code execution returnsto Igor. There are no catch blocksin Igor. Exceptions thrown from within
your XOP must be caught inside your XOP. Also, depending on the objects that you choose to
throw, you must make sure that you del ete these objects before execution returnsto Igor.

When writing a complex XOP it is sometimes useful to employ a catch-all wrapper. In the
example below we show how thisis done for an operation:

static wvoid
XOPEntry (void)

{

long result=0;

try {
switch (GetXOPMessage ())
case CMD:
result = DoCmd() ;
break;

}
}

catch(...) { // This will catch any exception.
result = someErrorCode;
}

SetXOPResult (result) ;

}

The catch-all wrapper guarantees that all exceptions are caught. However, because it is so
general, it usually does not contain provisions for disposing of thrown objects.

100

Chapter 3 — Development Systems

C++ XOPs in CodeWarrior Pro

CodeWarrior CFM Project Settings
In Linker pane of the project settings window, you must set the entry points correctly.

The Main entry point must be set to main, the XOP's main function.

For C++ XOPs, the Initialization and Termination entry points must be set to __initialize and
__terminate. Failure to enter the initialization and termination entry points as shown can cause a
crash when a C++ XOP throws an exception.

Using the new Operator in CodeWarrior

C++ objects are usually allocated using the new operator. For example, an array of integers may
be alocated by:

int *myArray;

myArray = new int [40]
if (myArray == NULL)
DoErrorHandling() ;

CodeWarrior's implementation of the new operator depends on the definition of NEWMODE in
the file New.cp (in the "MacOS Support:Libraries:RunTime:(Common Sources)" folder). The
standard libraries shipped by Metrowerks use the "fast" mode which allocates memory in blocks
that are not released even after the corresponding objects are destroyed. If your XOP istransient
(that is, if you allow Igor to remove it from memory when your XOP isfinished doing its job)
this gives rise to severe memory leaks. If your XOP isresident (stays in memory until Igor quits),
then thisis not a problem.

For transient XOPs, the solution to this problemis to redefine NEWMODE at the top of thefile
New.cp

#define NEWMODE NEWMODE SIMPLE

Y ou then need to recompile al the CodeWarrior runtime libraries that you use. This causes
CodeWarrior to generate code that uses different memory management techniques, and avoids the
leakage problem.

To avoid the need to recompile Metrowerks libararies, we recommend that you leave your XOP
resident (the default) and not bother with changing the behavior of new. Resident and transient
XOPs are discussed on page 135.

101

Chapter 3 — Development Systems

102

C++ XOPs in Xcode

If your XOP'smain fileisa C++ file (.cp or .cpp) rather than a C file (.c), you need to make a
change. When compiling C++, X code requires that the main function return an int. Open your
main .cpp file and change the main function from:

HOST IMPORT void
main (IORecHandle ioRecHandle)

to:

HOST IMPORT int
main (IORecHandle ioRecHandle)

Find the declaration of your main function and change it also. The declaration will be either in
your main .cpp file or in a.h file such.

C++ XOPs in Visual C++ 6

If you use C++ exceptions, you need to enable the exception handling in the C/C++ tab, C++
Language category, in the project settings dialog.

If you use RTTI you need to enable it in the C/C++ tab, C++ Language category, in the project
settings dialog.

C++ XOPs in Visual C++ 7

The default settings in a new project should work with possible minor tweaks.

Igor/XOP Interactions

OVEIVIBIW ..ttt sttt s e et be s e e tesaeebesbeensenbeereeneene 105
XOP RESDUICES.......eeeteeteisiee et ettt sie e s s see bt esbeesanesanesresneeaneenneennees 108
Creating Resources 0N MaCintOSNcovviiererieneieeerese e 109
Creating Resources 0N WindOWS..........ccccorrieereneeeene e 109
The XOPI 1100 RESOUICE.......cueriereeierieriisiesiesiesseseees s sie s s sesessessens 110
BaSIC XOP MESSAJES.......ceueruiiuiriirierieieeesiesie sttt st sse s b sr e sne s 112
Messages for Operations and FUNCLIONS............cooeeiiiieieneneere e 115
Messages for XOPS With WINAOWS.........cccecieiiiniennie e 116
Messages for XOPs that Save and Load Settings.........ccocveveeeveieeciescceeiennns 124
HIOP EFTOIS ..ttt ettt sttt b e b s ae e s ae e et et e e nbe e sbe e saeesane e 127
g o 0o L= J R 127
Lo o g = (o G @00 (=== 127
XOP Custom Error COUES.......cccueiiieeiiieieieseseese e eee et esae e sseeneens 128
MBC OS ErrOr COUES.coueeueeeinieeiesiesieeie e e e sie e e see e e e sneeseesneeneeseas 128
Handling Windows OS Error COUES..........ccvveevievieeeeseseeeesie s eeee e 128
AddiNg CUSIOM EFTOIS.......cviiiieieiisiesies e 130
Displaying Your Own Error AlErtcooeveeieneeeee e 131
XOPS aNd PreferenCeSo i 132
XOPs and EXPEIMENLSccoeceeiiiiieiesieie ettt 132
Saving and Loading XOP SEttiNgScccererereieeieeieesesie e 133
The IORECHANMIE.........oiiee e e e 135
Resident and Transient XOPS..........cccceiririneneeeee s 135
Receiving IDLE Messages For Background Processingccoceevereeeenne. 136
Messages, Arguments and RESUILScoeeeeriieeiee e 136
Handling RECUISION.......ccciiiieiie e cie et s e see e te et e e e e e e 137
Data SNAITNGveveeeeeeeie et 139
1gor/XOP Compatibility ISSUES.........cceiviiiireniiriesieeeee e 140
Checking 1gor' SVESION.........cccieiiesie e se e et 140

103

Chapter 4 — Igor/XOP Interactions

104

KOP ProtOCOl VEISION ...vvveeeeeeee et te e e e e eeeeieeeee e e e e saeasaaeereessesassesreeeeesses

Chapter 4 — Igor/XOP Interactions

Overview

The code on page 106 is a simplified sketch XOP1, a simple XOP that adds a single command
line operation to Igor. The underlined items are functions, constants or structures defined in the
XOPSupport library and headers. To get afeeling for how Igor and the X OP interact, we will
follow a chain of eventsin chronological order.

1

When Igor islaunched, it scans the Igor Extensions folder and any subfolders looking for
XOPs. On Macintosh, Igor identifiesa CFM XOP file by itsfile type (IXOP) and identifiesa
Mach-O XOP package by the " .xop” extension on the package folder’ s name. On Windows,
Igor identifies an XOP file by its“.xop” file name extension. When Igor finds an XOP, it first
looks for its XOPI resource, from which Igor determines various characteristics of the XOP.

Next Igor looks for resources that identify what things (external operations, external
functions, menu items, menus) the XOP adds. In the example below, the XOPC resourcetells
Igor that the XOP adds a command line operation named XOP1. This resource is stored in the
XOP sresource fork and is defined in the XOPL1.r file on Macintosh and in the
XOP1WinCustom.rc file on Windows.

The user invokes the X OP1 operation via lgor's command line or via a procedure.

Igor loads the XOP into memory and calls the XOP's main routine, passing it an
IORecHandle. main does al of the XOP' sinitiaization including calling the following
XOPSupport routines.

XOPInit Stores the IORecHandle in aglobal variable which is used by all
subsequent XOPSupport calls.

SetX OPENtry Sets afield in the IORecHandl e pointing to the XOP's X OPENtry
routine. Igor uses this routine for most subsequent calls to the
XOP.

RegisterOperation Tells Igor the syntax of the XOP1 external operation and the
address of the function (ExecuteX OP1) that Igor must call called to
execute the operation.

SetX OPResult Sets the result field in the IORecHandle to zero. Thistells Igor that
the initialization succeeded.

Igor parses the command’ s parameters, stores them in a structure, and calls ExecuteX OP1,
passing the structure to it.

The ExecuteX OP1 function does the necessary work and returns aresult to Igor. Theresult is
zero for success or anon-zero error code..

If the result returned to Igor is non-zero, Igor displays an error alert.

105

Chapter 4 — Igor/XOP Interactions

// From XOPl.r for Macintosh.
resource 'XOPC' (1100) { // Describes operations the XOP adds to Igor.
{
"XOoP1", // Name of operation.
XOPOp + UtilOP + compilableOp, // Operation's category.

}
bi

// From XOP1WinCustom.rc for Windows.

1100 XOPC // Describes operations the XOP adds to Igor.
BEGIN

"XOP1\0", // Name of operation.

XOPOp | utilOp | compilableOp, // Operation's category.

m\o" // NULL required to terminate resource.
END

// From XOPl.c for Macintosh and Windows.

static int

ExecuteXOP1l (XOP1RuntimeParamsPtr p)
int result;
result = <XOP-specific code to implement command line operations;
return result;

}

static int
RegisterXOP1 (void)
char* cmdTemplate;
cmdTemplate = "XOP1l wave'";
return RegisterOperation (cmdTemplate, . . ., ExecuteXOPl, . . .)

}

static wvoid
XOPEntry (void)

long result = 0;

switch (GetXOPMessage()) ({
// Handle message

}

SetXOPResult (result) ;

}

void

main (IORecHandle ioRecHandle)

{
XOPInit (ioRecHandle) ;
SetXOPEntry (XOPEntry) ;
RegisterXOP1 () ;
SetXOPResult (0L) ;

106

Chapter 4 — Igor/XOP Interactions

When the user invokes an XOP' s external operation or external function, in most cases Igor
directly calls afunction which was registered by the XOP for that operation or function. Chapters
5 and 6 discuss the details of creating external operations and functions.

Except for calling an external operation or an external function, all communications from Igor to
the XOP go through the X OPENtry routine. For example, if the XOP adds a menu item to an Igor
menu, when the user chooses the menu item Igor calls XOPEntry, passing the MENUITEM
message and parameters in fields of the IORecHandle. The X OPEntry routine then calls

GetX OPM essage to determine what message Igor is sending and GetX OPltem to obtain
parameters associated with the message.

The IORecHandle is managed completely by the X OPSupport library routines. Except for passing
the IORecHandle to the X OPInit function during initialization, you can completely ignoreit.

107

Chapter 4 — Igor/XOP Interactions

XOP Resources

There are three types of resources that you can use in your XOP:

Type of Resour ce Defined By Examples

X OP-specific WaveMetrics XOPI, XOPC, XOPF
Platform-specific Apple, Microsoft Menus, dialogs

Y our own resources You Whatever you define

The XOP-specific resources describe your XOP to Igor. This section discusses the form and
meaning of these resources. Thistablelists al of the XOP-specific resources:

Resource What It Does Explained In

XOPI 1100 Describes XOP' s general propertiesto Igor. This chapter
XOPC 1100 Defines operations added by the XOP. Chapter 5
XOPF 1100 Defines functions added by the XOP. Chapter 6
STR# 1100 Defines error messages added by the X OP. Chapter 10

STR# 1101 Miscellaneous XOP stringsthat Igor needsto Chapter 8
know about.

STR# 1160 Used by XOPsthat add target windows. Chapter 9
XMN1 1100 Defines main menu bar menu added by XOP. Chapter 8
XMI1 1100 Defines menu items added to Igor menus. Chapter 8
XSM1 1100 Defines submenus used by XOP. Chapter 8

The STR# resource is a standard Apple resource format. The other listed resource types are
custom XOP resource formats.

All XOPs must have an XOPI resource. Igor will refuse to run your XOP if it lacks this. All of the
other resources are required only if the XOP uses the associated features.

108

Chapter 4 — Igor/XOP Interactions

Creating Resources on Macintosh

Y ou can create Macintosh resources by editing a .r file astext and then letting your devel opment
system compile the .r file or by using a resource editor such as ResEdit or Resorcerer. For the
XOP-specific resources, you must edit the .r file. Y ou should start with a..r file from a
WaveMetrics sample XOP.

With Mac OS X, Apple has moved away from using resources to describe user interface items
like menus, controls, dialogs and windows. Consequently it has abandoned ResEdit. In its place,
Apple has created “nibs’, which are files containing descriptions of user interface items, and the
Interface Builder application, which you can use to create nibs.

XOP Toolkit 5 and Igor Pro 5 do not use or support nibs. Y ou can use nibs and Interface Builder
for user interface items that Igor does not need to know about, such as controls in windows you
create or dialogs that you run with your own dialog code.

For those items that Igor does need to know about, such as the X OP-specific resources and
menus, you must edit a.r file. Macintosh devel opment systems include resource compilers that
they useto compile any .r filesin the project. The resulting resources are stored in the resource
fork of CFM XOPs and in the .rsrc file in the package folder of Mach-O XOPs.

The XOPTypes.r XOPSupport file defines format of the custom WaveMetrics resource types
such as XOPI, XOPC and XOPF. XOPTypes.r is#included in your .r file.

Creating Resources on Windows

On Windows, Visual C++ creates resources by compiling .rc files. Y ou can create the .rc file
either by entering text directly into the file or by using the development system'’s resource editor.

On Windows, the X OP-specific resources are stored in a separate .rc file which is edited as a text
file. For example, the XOP1 sample X OP includes an XOPL.rc file and an XOP1WinCustom.rc
file. XOP1WinCustom.rc contains the X OP-specific resources. XOPL.rc contains any other
resources (e.g., version and menu resources) and also contains an include statement that includes
the XOP1WinCustom.rc.

To include the XOP1WinCustom.rc file in the XOP1.rc file, use the Resource Includes dialog.
Visual C++ will not let you invoke the Resource Includes dialog until you have inserted at least
one resource into the project. If you do not already have a standard resource file, like XOPL.rc,
you can create one by creating a version resource for your project. Once you have added a
standard resource file to the project, you must display the resource view of the project and select
the folder icon that represents the project resources. Now the Resource Includes item in the View
menu (Visual C++ 6) or Edit menu (Visual C++ 7) will be enabled, and you can invoke the
Resource Includes dialog.

109

110

Chapter 4 — Igor/XOP Interactions

In Visual C++ 6, choose View->Resource Includes. In Visual C++ 7, choose Edit->Resources
View. In both systems, enter the include statement in the Compile-time Directives list of the
Resource Includes dialog:

#include "XOP1WinCustom.rc"

When you close the Resource Includes dialog, Visual C++ may display awarning saying
"Directive text will be written verbatim into your resource script and may render it

uncompilable". Despite this dire warning, you should click OK and then click OK in the Resource
Includes dialog to include the custom file.

When you change a resource using the built-in resource editor or change the compile-time
directives, Visual C++ writes out anew version of the main .rc file (e.g., XOP1.rc), which
contains the include statement referencing the X OP-specific .rc file (e.g., XOP1WinCustom.rc).
Visual C++ aso generates afile named resource.h, which isalso included in the main .rcfile.

The XOPI 1100 Resource
There is one resource that must be present in every XOP. That isthe XOPI 1100 resource. This
resource tells Igor afew things about your XOP. The form of the resourceis as follows.

// Macintosh
#include "XOPStandardHeaders.r" // Defines XOP-specific types and symbols.

type 'XOPI' ({ // XOPI - Describes general XOP properties to Igor.
XOP_VERSION, // XOP protocol version.
DEV_SYS CODE, // Code for development system used to make XOP.
0, // Obsolete - set to zero.
0, // True if XOP requires math coprocessor

XOP_TOOLKIT VERSION, // Version of XOP Toolkit used to create XOP.

¥

// Windows
#include "XOPResources.h" // Defines symbols used below.

1100 XOPI // XOPI - Describes general XOP properties to Igor.
BEGIN

XOP_VERSION, // XOP protocol version.

DEV_SYS CODE, // Code for development system used to make XOP.

0, // Obsolete - set to zero.

0, // Obsolete - set to zero.

XOP_TOOLKIT VERSION, // Version of XOP Toolkit used to create XOP.
END

If the XOPI 1100 resource is missing then Igor will not run the XOP.

Chapter 4 — Igor/XOP Interactions

The symbols XOP_VERSION, DEV_SYS CODE and XOP_TOOLKIT_VERSION are defined
in XOPResources.h which isincluded by XOPStandardHeaders.r. The values of these macros are
automatically set; you don’'t need to change them.

Thefirst field is used to make sure that the XOP is compatible with the X OP interface in the
version of Igor that is running. Thisis the version number of Igor’s XOP protocol at the time the
XOP was compiled, defined by the XOP_VERSION constant in the X OPResources.h file. See
Igor/XOP Compatibility | ssues on page 140 for details.

The next field tells Igor what development system was used to compile the XOP, which in some
cases determines aspects of how Igor calls the XOP.

The next two fields are obsol ete and must be set to zero.

Thefinal field tells Igor what version of the XOP Toolkit was used to compile the XOP, which in
some cases determines aspects of how Igor callsthe XOP. Prior to XOP Toolkit 5, thisfield had a
different meaning but always had the value 0 or 1. With XOP Toolkit 5/Igor Pro 5s, the field was
pressed into different service in a backward-compatible way

111

112

Chapter 4 — Igor/XOP Interactions

Basic XOP Messages

Here are the basic messages that 1gor can send to your XOP’' s XOPEnNtry routine. The constants
(INIT, IDLE, CMD, etc.) are defined in XOP.h. When Igor calls your XOPEntry routine, it calls
the GetX OPM essage X OPSupport routine to determine what message is being set. The arguments
listed are arguments Igor is passing to you. Y ou access them using the GetX OPItem X OPSupport
routine.

NOTE: You must get the message from Igor and get all of the arguments for the message
before you do any callbacksto Igor. For details see Avoiding Common Pitfalls on
page 320.

A typical XOP will ignore most of these messages and respond to just afew of them. An XOP
that just adds external operations or functions may ignore all of them.

As part of the response to a message from Igor, your XOP can pass aresult code back to Igor
using the SetX OPResult X OPSupport routine. The "Result" item in the following descriptions
refersto thisresult. See XOP Errorson page 127 for details on the error codes that you can
return to lgor.

Some messages have arguments of type Rect* (pointer to Rect). Thisis apointer to a Macintosh
rectangle structure, even when running on Windows.

INIT Tellsyour XOP that it needs to initialize itself.

Arguments: None.
Resullt: Error code from your initialization.

Thisisthe first message received by every XOP when it isloaded. This
message will be received by your main routine. Subsequent messages
will be received by your XOPERtry routine.

If your XOP returns a non-zero result via the SetX OPResult X OPSupport
routine, Igor will dispose of it immediately. Therefore you should do any
necessary cleanup before returning a non-zero result.

IDLE Tellsyour XOP to do itsidle processing.

Arguments: None.
Result: None.

Y our XOP gets this message if it has set the IDLES bit using the
SetX OPType X OPSupport routine. Y ou should do thisif your XOP has
tasks that it needs to do periodically so that you'll get the periodic IDLE

message.

Chapter 4 — Igor/XOP Interactions

MENUITEM

MENUENABLE

CLEANUP

Tellsyour XOP that its menu item has been selected.

Argument 0: Menu ID of menu user selected.
Argument 1: Item number of item user selected.
Resullt: Y our result code from operation.

Y our XOP must determine which of its menu items has been invoked
and respond accordingly. It should call SetX OPResult to pass zero or an
error code back to Igor.

See Chapter 8, Adding Menus and Menu Items, for details on how to
respond to this message.

Tellsyour XOP to enable or disable its menu items.

Arguments: None.
Result: None.

If your XOP has one or more menu items, it receives this message when
the user clicksin the menu bar or presses a command-key equivalent
(Macintosh) or accelerator (Windows). This message gives your XOP a
chance to enable, disable or change its menu items as appropriate.

Asof Igor Pro 5, an XOP receives the MENUENABLE message if its
window isthe front window, even if the XOP adds no menu items to
Igor. Previously Igor sent the MENUENABLE message only to XOPs
that added a menu item or a menu.

See Chapter 8, Adding Menus and Menu Items, for details on how to
respond to this message.

Tellsyour XOP that it is about to be closed and discarded from memory.

Arguments: None.
Result: None.

Y our XOP should dispose any memory blocks that it has allocated, close
any windows that it has opened and do any other necessary cleanup.

113

Chapter 4 — Igor/XOP Interactions

114

OBJINUSE

FUNCADDRS

Allows your XOPto tell Igor that it isusing a particular object.

Argument 0: Object identifier.

Argument 1: Object type.

Resullt: Zero if your XOP is not using the object,
oneif it isusing the object.

Igor passes this message to your XOP when it is about to dispose of an
object (e.g., kill awave) that your XOP may depend upon.

At present, the only use for thisisto tell Igor that your XOP isusing a
particular wave so that Igor will not let the user kill the wave. The object
identifier is the wave handle. The object typeis WAVE_OBJECT.
Object types are defined in IgorXOP.h.

Y ou heed to respond to this message if your XOP depends on a particular
wave' s existence. Otherwise, ignore it.

When a new experiment is loaded or Igor quits, all objects are killed,
whether they are in use or not. Therefore, if your XOP expects one or
more Igor objects to exist, the X OP must be prepared to stop using the
objects when either of these events occurs. Igor calls your XOP with the
NEW message when a new experiment is about to be opened and with
the CLEANUP message when Igor is about to quit.

Asks your XOP for the address of one of its functions.

Argument O: Function index number starting from O.
Result: Address of function or NULL.

See Chapter 6, Adding Functions, for details.

Chapter 4 — Igor/XOP Interactions

Messages for Operations and Functions

Most XOPs that add operations or functions will be set up such that 1gor will call a specific C
function in the XOP when the user invokes the XOP' s external operation or function. Thisis
called the “direct” method. Such XOPs will not receive the messages discussed in this section.
Direct external operations were added in Igor Pro 5. Both Igor Pro 4 and Igor Pro 5 support direct
external functions.

These messages are sent only to XOPs that use the “message” method to implement external
operations and functions.

CMD Tellsyour XOP to parse and execute one of the operations that it added
to Igor. If your XOP uses Operation Handler (described on page 151), it
will not receive this message.

Argument 0: Pointer to C string containing name of operation.
Argument 1: Index identifying the operation being invoked.
Result: Y our result code from the operation.

Y our XOP must determine which of its operations has been invoked,
parse the operation’ s parameters and execute the operation. It must call
SetX OPResult to pass zero or an error code back to Igor.

The operation index is the number, starting from zero, of the operation in
the XOP’'s XOPC 1100 resource. This resource, described in Chapter 5,
lists each of the operations added by the XOP.

See Chapter 5, Adding Operations, for details.

FUNCTION Tells your XOP to execute one of its functions.

Argument O: Function index number starting from O.
Result: Function error code or O.

Y our XOP must determine which of its functions has been invoked and
execute the function. It should call SetX OPResult to pass zero or an error
code back to Igor.

The function index is the number, starting from zero, of the function in
the XOP' s XOPF 1100 resource. This resource, described in Chapter 6,
lists each of the functions added by the XOP.

See Chapter 6, Adding Functions, for details.

115

Chapter 4 — Igor/XOP Interactions

116

Messages for XOPs with Windows

If your XOP has one or more windows of its own you will need to respond to some of the
following messages from Igor. Many of these messages work hand-in-hand with callbacks for
XOPs with text windows.

For asimple example of adding awindow to Igor, see the WindowXOP1 sample XOP. For a
more complex example, see the TUDemo sample.

Some of the window-related messages are sent to Macintosh XOPs only. These are noted below.
Windows X OPs receive anal ogous messages directly from the Windows OS. See Chapter 9 for
details.

Many of the window-related messages include an argument that refers to awindow. The type of
this argument is XOP_WINDOW_REF. XOP_WINDOW_REF is defined in XOP.h. On
Macintosh, it isaWindowPtr. On Windows, it is an HWND.

ACTIVATE Tellsyour XOP that it needs to activate or deactivate a window.

Argument 0: XOP_WINDOW_REF for window to activate.
Argument 1: Modifiersfield from activate EventRecord.
Result: none.

Windows Note: Igor does not send the ACTIVATE message to Windows
XOPs. Instead, the XOP's window procedure receives the
WM_MDIACTIVATE message directly from the Windows OS.

UPDATE Tellsyour XOP that it needs to update a window.

Argument 0: XOP_WINDOW_REF for window to update.
Result: None.

Windows Note: Igor does not send the UPDATE message to Windows
XOPs. Instead, the XOP's window procedure receivesthe WM _PAINT
message directly from the Windows OS.

GROW Tellsyour XOP that it needs to change the size of its window.

Argument 0: XOP_WINDOW_REF for the window.
Argument 1: Sizeto set the window to.
Result: None.

The size argument has the vertical size for the window inits high word
and the horizontal size for the window in its low word. However, if size
iszero it means you need to zoom your window in or out.

Chapter 4 — Igor/XOP Interactions

SETGROW

CLOSE

Windows Note: Igor does not send the GROW message to Windows
XOPs. Instead, the X OP's window procedure receivesthe WM_SIZE
message directly from the Windows OS.

Asks your XOP for the minimum allowable size for window.

Argument 0: XOP_WINDOW_REF.
Argument 1: Pointer to a Rect to receive grow limits.
Result: None.

Set the top coordinate of the Rect to the minimum vertical sizein pixels
for your window. Set the |eft coordinate to the minimum horizontal size
in pixelsfor your window. Leave the right and bottom coordinates alone.
They are set by Igor based on the current screen setup.

Igor uses the values returned via the Rect pointer to set alower limit on
the size of the window when the user resizes the window on Macintosh.
On Windows, the values returned have no effect.

Tellsyour XOP that the user wants to close its window.

Argument 0: XOP_WINDOW_REF.
Argument 1: Closetype (Igor Pro 2.0 or later).
Result: None.

Igor sends the CL OSE message when the user chooses Close from the
Windows menu. On Macintosh, Igor aso sends the close message when
the user clicks the close box. On Windows, when the user clicks the
close button, the Windows OS sends aWM_CL OSE message directly to
the XOP window procedure and Igor does not send the CLOSE message.

Depending on your XOP, closing the window may also close the XOP or
may just hide the window. It’s up to you.

The close type argument has the foll owing meaning:

0 Normal close (ask about saving and then close).
1 Close without saving.
2 Save without asking and close.

The argument will have the value 1 if the user presses option while
clicking your window’ s close box on Macintosh.

117

Chapter 4 — Igor/XOP Interactions

118

CLICK

KEY

NULLEVENT

WINDOW_MOVED

Tellsyour XOP aclick occurred in its window.

Argument 0: XOP_WINDOW_REF.
Argument 1: Pointer to EventRecord describing click.
Result: None.

Service or ignore the click event as appropriate.

Windows Note: Igor does not send the CLICK message to Windows
XOPs. Instead, the XOP's window procedure receives the
WM_LBUTTONDOWN and WM_RBUTTONDOWN messages
directly from the Windows OS.

Tells your XOP a keydown event occurred in its window.

Argument 0: XOP_WINDOW_REF.
Argument 1. Pointer to EventRecord describing key.
Result: None.

Service or ignore the keydown as appropriate.

Windows Note: Igor does not send the KEY message to Windows X OPs.
Instead, the XOP's window procedure receives the WM_KEY and
WM _CHAR messages directly from the Windows OS.

Tellsyour XOP anull event occurred while its window was active.

Argument 0: XOP_WINDOW_REF.
Argument 1: Pointer to EventRecord describing null event.
Result: None.

Set the cursor based on the where field in the EventRecord.
Windows Note: Igor does not send the NULLEVENT message to

Windows X OPs. Instead, the XOP's window procedure receives the
WM_MOUSEMOV E message directly from the Windows OS.

Tells you that the user moved your window by dragging or by using the
MoveWindow command line operation.

Argument 0: XOP_WINDOW _REF identifying your window.
Result: None

Chapter 4 — Igor/XOP Interactions

Windows Note: Igor does not send the WINDOW_MOV ED message to
Windows X OPs. Instead, the XOP's window procedure receives the
WM_MOVE message directly from the Windows OS.

MOVE_TO_PREFERRED_POSITION
Tellsyour XOP that the user wants to move it to its preferred position.
Igor sends this message when the user chooses Move To Preferred
Position from Igor's Window Control submenu.

Argument 0: XOP_WINDOW _REF identifying your window.
Result: None.

If your window has a preferred or default size and position, you can
respond to this message by moving it to that size and position.

If you want to support this message, you must enable the Move to
Preferred Position menu item by calling SetlgorMenultem, as described
in Chapter 8.

Windows Note: If the window is maximized or minimized when the user
chooses this menu item, Igor will restore the window to its normal state
before sending this message to your X OP.

MOVE_TO_FULL_POSITION
Tellsyour XOP that the user wants to moveit to its "full size position”.
The meaning of "full size position” depends on the window. It may be
the size and position that displays all of the window's content or that fills
the Macintosh screen or Windows MDI frame. Igor sends this message
when the user chooses Move To Full Size Position from Igor's Window
Control submenu.

Argument 0: XOP_WINDOW _REF identifying your window.
Argument 1: Pointer to a suggested rectangle (Rect*).
Result: None.

If you just want to fill the Macintosh screen or the MDI frame, you can
use the suggested rectangle passed by Igor as argument O. It isin units of
pixels and defines the content region of the window - that is, the region
of the window excluding the window title bar or caption and the window
border, if any. Y ou can move the window to the suggested position by
calling TransformWindowCoordinates and then SetX OPWindowlgor-
PositionAndState.

119

Chapter 4 — Igor/XOP Interactions

120

RETRIEVE

CuT

If you want to be fancy, you can calculate your own rectangle that is
customized for your window's content.

If you want to support this message, you must enable the Move to Full
Size Position menu item by calling SetlgorMenultem, as described in
Chapter 8.

Windows Note: If the window is maximized or minimized when the user
chooses this menu item, Igor will restore the window to its normal state
before sending this message to your X OP.

Tells your XOP that the user wants to move your window entirely on
screen (Macintosh) or entirely within the MDI frame (Windows). Igor
sends this message when the user chooses Retrieve Window or Retrieve
All Windows from Igor's Window Control submenu.

Argument 0: XOP_WINDOW_REF identifying your window.
Argument 1: Pointer to a suggested rectangle (Rect*).
Result: None.

The suggested rectangle should be appropriate for most if not all cases. It
isin units of pixels and defines the content region of the window - that is,
the region of the window excluding the window title bar or caption and
the window border, if any. Y ou can move the window to the suggested
position by calling TransformWindowCoordinates and then SetX OP-
WindowlIgorPositionAndState.

If you want to support this message, you must enable the Retrieve Window
menu item by calling SetlgorMenultem, as described in Chapter 8.

You will also receive this message if the user chooses the Retrieve Al
Windows menu item. Thisis true whether or not you have enabled the
Retrieve Windows menu item. If you don't care about this message, you
can just ignoreit.

Windows Note: Igor will not send this message to your XOP if its
window is maximized.

Tellsyour XOP that the user wantsto do a cut in its window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Chapter 4 — Igor/XOP Interactions

COPY

PASTE

CLEAR

UNDO

FIND

REPLACE

INDENTLEFT

INDENTRIGHT

Tellsyour XOP that the user wantsto do a copy in its window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tellsyour XOP that the user wantsto do a pastein its window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tellsyour XOP that the user wantsto do aclear in its window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tells your XOP that the user wantsto do an undo in its window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tells your XOP that the user wantsto do afind in its window.

Argument 0: XOP_WINDOW_REF.
Argument 1: Code for type of find.

(1 for normal, 2 for find same, 3 for find selection)
Result: None.

Tellsyour XOP that the user wantsto do areplacein its window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tellsyour XOP that the user wantsto do an indent-left in its window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tellsyour XOP that the user wants to do an indent-right in its window.

Argument 0: XOP_WINDOW_REF.
Result: None.

121

Chapter 4 — Igor/XOP Interactions

DISPLAYSELECTION

PAGESETUP

PRINT

INSERTFILE

SAVEFILE

DUPLICATE

EXPORT_GRAPHICS

SELECT_ALL

122

Tellsyour XOP that the user wants to see the selected part of its window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tellsyour XOP that the user wants to do a page setup for its window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tellsyour XOP that the user wantsto print al or part of its window.

Argument0: XOP_WINDOW_REF.
Result: None.

Tellsyour XOP that the user wants to insert the contents of afileinits
window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tellsyour XOP that the user wants to save the contents of its window in
afile.

Argument 0: XOP_WINDOW_REF.
Result: None.

Igor 1.2 sent this message if the user chose Edit->Save Text while your
XOP swindow is active. Igor Pro has no Edit->Save Text item and
therefore will not send this message.

Tellsyour XOP that the user wants to do a duplicate in your window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tellsyour XOP that the user wantsto do an export graphics operation.

Argument 0: XOP_WINDOW_REF.
Result: None.

Tellsyour XOP that the user wants to do a select-all in your window.

Argument 0: XOP_WINDOW_REF.
Result: None.

Chapter 4 — Igor/XOP Interactions

SAVE _WINDOW Tells your XOP that the user wants to do a save of your window.

Argument 0: XOP_WINDOW_REF.
Result: None.

SAVE_WINDOW_AS Telsyour XOP that the user wants to do a save-as of your window.

Argument0: XOP_WINDOW_REF.
Result: None.

SAVE _WINDOW_COPY Tellsyour XOP that the user wants to do a save-a-copy of your window.

Argument 0: XOP_WINDOW_REF.
Result: None.

REVERT_WINDOW Tellsyour XOP that the user wantsto do arevert of your window.

Argument0: XOP_WINDOW_REF.
Result: None.

GET_TARGET_WINDOW_NAME
This message is used by XOPs that add target window typesto Igor. See
Adding XOP Target Windows on page 257 for further information.

SET_TARGET_WINDOW_NAME
This message is used by XOPs that add target window typesto Igor. See
Adding XOP Target Windows on page 257 for further information.

GET_TARGET_WINDOW_REF
This message is used by XOPs that add target window typesto Igor. See
Adding XOP Target Windows on page 257 for further information.

SET_TARGET_WINDOW _TITLE
This message is used by XOPs that add target window typesto Igor. See
Adding XOP Target Windows on page 257 for further information.

SAVE_WINDOW_MACRO

This message is used by XOPs that add target window typesto Igor. See
Adding XOP Target Windows on page 257 for further information.

123

Chapter 4 — Igor/XOP Interactions

Messages for XOPs that Save and Load Settings

An elaborate XOP can save settings and/or documents as part of an Igor experiment and load
those settings and documents when the user reopens the experiment. To do this, your X OP needs
to respond to the messages in this section.

NEW

MODIFIED

CLEAR_MODIFIED

SAVE

LOAD

124

Tellsyour XOP that the user selected New Experiment from the File
menul.

Arguments: None.
Result: None.

When the user creates a new experiment your XOP should set its settings
to their default state.

Asksyour XOPif it has been modified since the last NEW, LOAD or
SAVE message and needs to save settings or documents.

Arguments: None.
Result: 0if your XOP is not modified, 1 if modified.

Y ou need to respond to this message if your XOP saves settings or
documents as part of an experiment. Otherwise, ignore it.

Igor sends this message during itsinitial startup, and after Igor generates
anew experiment (in response to the user choosing New Experiment),
and after Igor finishes loading an experiment (in response to the user
choosing Open Experiment or Revert Experiment), and after Igor
finishes saving an experiment (in response to the user choosing Save
Experiment or Save Experiment As). An XOP that saves datain
experiment files can use this message to clear its modified flag.

Arguments: None.
Result: None.

This message is obsolete. Igor Pro will not send it.

This message is obsolete. Igor Pro will not send it.

Chapter 4 — Igor/XOP Interactions

SAVESETTINGS Allows your XOP to save settings as part of an experiment.

Argument 0: Savetype.
Argument 1: Experiment type.
Result: Handle to your XOP' s settings or NULL.

Your XOP can save its settings in the experiment file. If you want to do
this, return a handle to the settings data to be saved. Otherwise, ignore
the message. See Saving and L oading XOP Settings on page 133 for
details.

If you return a handle, Igor stores the datain the experiment file and
disposes the handle. Don't access the handle once you passit to Igor.

The save type will be one of the following which are defined in
IgorXOP.h:

SAVE_TYPE_SAVE
SAVE_TYPE_SAVEAS
SAVE_TYPE_SAVEACOPY
SAVE_TYPE_STATIONERY

The experiment type will one of the following which are defined in
IgorX OP.h:

EXP_PACKED
EXP_UNPACKED

125

126

Chapter 4 — Igor/XOP Interactions

LOADSETTINGS

Allows your XOP to load settings it saved in an experiment.

Argument 0: Handle to data saved in experiment file or NULL.
Argument 1: Load type.

Argument 2: Experiment type.

Result: None.

If your XOP saved its settings in the experiment being opened you
should reload those settings from the handle. If your experiment did not
save its settings then the handle will be NULL and you should do
nothing. See Saving and L oading XOP Settings on page 133 for
details.

The handle that Igor passes to you comes from the experiment file and
will be automatically disposed when Igor closes the experiment file so
don’t access it once you finish servicing the LOADSETTINGS message.

The load type will be one of the following which are defined in
IgorXOP.h:

LOAD_TYPE_OPEN
LOAD_TYPE_REVERT
LOAD_TYPE_STATIONERY
LOAD_TYPE_MERGE (lgor Pro 5 or later)

The experiment type will one of the following which are defined in
IgorX OP.h:

EXP_PACKED
EXP_UNPACKED

Chapter 4 — Igor/XOP Interactions

XOP Errors

The XOP protocaol facilitates providing helpful error messages when something goeswrong in
your XOP. Y ou can return an error code to Igor in response to the INIT, CMD, FUNCTION and
MENUITEM messages. Y ou pass the error code to Igor by calling the SetX OPResult
XOPSupport routine. When you do this, Igor displays an error dialog. Igor displays the dialog
when your XOP returns, not immediately.

Igor will also display an error message if you return a non-zero result from a direct external
operation or direct external function.

In some cases, you may need to display an error dialog other than in response to these messages.
In this case you need create your own error dialog routine or use the IgorError XOPSupport
routine. See Displaying Your Own Error Alert on page 131 for details on how to do this.

The GetlgorErrorMessage X OPSupport routine returns an error message for a specified error
code. Thisisuseful if you want to display an error message in your own window.

Error Codes

There are three kinds of errorsthat you can return to Igor: Igor error codes (in the range -1 to
9999), Mac OS error codes (in the range -32768 to -2) and your own custom error codes (in the
range 10000 to 10999). Y ou must not return Windows OS error codes to Igor because these codes
conflict with Igor error codes. Instead, you must trand ate Windows OS Error codesinto Igor
error codes. Thisis explained below.

Igor Error Codes

An Igor error code is acode for an error that Igor might generate itself. The file IgorXOP.h
contains #defines for each of the Igor error codes. Y our XOP can return an Igor error code and
Igor will display an appropriate error dialog. For example, if your XOP returns NOMEM, Igor
displays an "out of memory" error dialog and if your XOP returns NOWAYV, Igor displays an
"expected wave name" error dialog.

In the IgorX OP.h file you will find
#define FIRST IGOR5_ ERR 808
This marks the start of error codes added in Igor Pro 5. If you want your XOP to run under Igor

Pro 4, you can not return error codes greater than or equal to FIRST_|GOR5_ERR. Instead, use
custom error codes.

Thereisone specia Igor error code: -1. It signifies an error for which an error dialog is not
necessary. Return -1 if the user aborts an operation or if you reported the cause of the error in
some other way. Thistells Igor that an error occurred but Igor will not display an error dialog.

127

Chapter 4 — Igor/XOP Interactions

128

XOP Custom Error Codes

Custom XOP error codes are defined by an XOP. #defines for these error codes should be created
in the XOF s .h file and there must be a corresponding error message in the XOP' s STR# 1100
resource which is described in Chapter 10. Custom error codes are numbered starting from
FIRST_XOP_ERR which isdefined in XOP.h. The details of adding custom error messages are
discussed on page 130 under Adding Custom Errors.

Mac OS Error Codes

A Mac OS error code is acode for an error generated by the Macintosh operating system. A Mac
OS error code is aways negative. Igor contains tables that alow it to display meaningful error
messages for the most common Mac OS error codes. For other Mac OS errors, Igor displays a
generic error message.

Handling Windows OS Error Codes

Windows OS error codes conflict with Igor error codes. For example, the error code 1 (NOMEM)
means "out of memory" in Igor. On Windows, it means "The function isinvalid® (ERROR_
INVALID_FUNCTION). Igor interprets error codes that you return to it as Igor error codes. If
you pass a Windows OS error code to Igor, you will get an incorrect error message.

On Windows, Igor provides two functions to deal with this problem. WindowsErrorTolgorError
trandlates a Windows error code that you get from the Windows GetL astError function into an
error code that Igor understands. WM GetL astError is a WaveMetrics substitute for the Windows
GetL astError function that also returns error codes that Igor understands.

Hereis an exampleillustrates how you might use WindowErrorTolgorError.

int

Test (void) // Returns 0 if OK or a non-zero error code.
int err;
if (SetCurrentDirectory ("C:\\Test") == 0) {

err = GetLastError () ;

// You can add code to examine err here, if necessary.
err = WindowsErrorTolIgorError (err) ;

return err; // Return code to Igor.

}

return 0;

}

Thisis the recommended technique if your own code needs to examine the specific error code
returned by GetLastError. Usualy, the precise error code that GetL astError returns does not
affect the flow of your code. In such cases, we can rewrite the function using WM GetL astError,
which itself calls GetLastError and WindowsErrorTolgorError.

Chapter 4 — Igor/XOP Interactions

int
Test (void) // Returns 0 if OK or a non-zero error code.
int err;
if (SetCurrentDirectory ("C:\\Test") == 0) {
err = WMGetLastError () ;
return err; // Return code to Igor.
return 0O;

}

In addition to trandlating the error code, WM GetL astError is different from GetLastError in two
regards. First, it always returns a non-zero result. Second, it calls SetLastError(0) after it calls
GetLastError. The following example illustrates why WM GetL astError does these things.

/* GetAResource (hModule, resID, resType)

Returns 0 if OK or non-zero error code.
*/
int
GetAResource (HMODULE hModule, int resID, const char* resType)

{

HRSRC hResourcelInfo;

hResourceInfo=FindResource (hModule, MAKEINTRESOURCE (resID) , resType) ;

if (hResourcelInfo == NULL) { // hResourceInfo is NULL
err = GetlLastError () ; // but GetlastError returns O.
return err; // So we return 0 but hResourceInfo is NULL.

}

The Windows documentation for FindResource says "If the function fails, the return value is
NULL. To get extended error information, call GetLastError.

However, empirical evidence under Windows 95 indicates that, if the resource is not found,
FindResource returns NUL L, but does not set the last error. Therefore, GetL astError returns a
stale error code - whatever was set by some previous Windows API call. If this happensto be
zero, then the function above will return zero and the calling routine will think that it succeeded,
with possibly disastrous results.

If we use WM GetL astError instead of GetLastError, we will always get a non-zero result,
avoiding the disaster. WM GetL astError calls GetLastError and, if GetLastError returns 0,
WM GetL astError returns WM_UNKNOWN_ERROR. Furthermore, since WM GetL astError

129

Chapter 4 — Igor/XOP Interactions

130

calls SetL astError(0) after calling GetL astError, we can be certain that we will not get a stale
error code the next time we call it.

Y ou should call GetLastError or WM GetL astError only when you have received another
indication of failure from a Windows API call. For example, FindResource signals afailure by
returning NULL. Y ou should not call GetLastError or WM GetL astError if FindResource returns
non-NULL. Thisis because Windows API routines do not set the last error code if they succeed.
They set it only if they fail, and sometimes not even then.

Adding Custom Errors

Each time your XOPEntry routine receivesthe INIT, CMD, FUNCTION or MENUITEM
message, you must return an error code to Igor using the SetX OPResult X OPSupport routine.
Also, your direct external operations and functions must return an error code as its function resullt.
If the error code is non-zero, Igor will display an error dialog when your XOP returns.

Custom XOP error codes are codes that you define for your XOP, typically in a.h file of your
own. For each code, you define a corresponding error message. Y ou store the error messagesin
your STR# 1100 resource in the resource fork of your XOP.

The custom error codes for your XOP must start from FIRST_XOP_ERR+1. FIRST_XOP_ERR
is defined in the XOP.h file. As an illustration, here are the custom error codes for the XFUNC3
sample XOP as defined in XFUNC3.h.

#define REQUIRES IGOR 200 1 + FIRST XOP_ ERR
#define UNKNOWN XFUNC 2 + FIRST XOP_ERR
#define NO_ INPUT STRING 3 + FIRST XOP_ERR

Hereis XFUNC3's STR# 1100 resource, which defines the error messages corresponding to these
error codes.

// Macintosh, in XFUNC3.r.

resource 'STR#' (1100) { // Custom error messages
"XFUNC3 requires Igor Pro 2.0 or later.",
"XFUNC3 XOP was called to execute an unknown function.",
"Input string is non-existent.",

1
}i

// Windows, in XFUNC3WinCustom.rc.
1100 STR#
BEGIN
"XFUNC3 requires Igor Pro 2.0 or later.\0",
"XFUNC3 XOP was called to execute an unknown function.\O0",
"Input string is non-existent.\0",
"\o" // NULL required to terminate the resource.
END

Chapter 4 — Igor/XOP Interactions

Displaying Your Own Error Alert

Igor displays an error alert if you report an error in response to the INIT, CMD, FUNCTION and
MENUITEM messages or as the function result of adirect operation or function. Y ou can call the
IgorError XOPSupport routine to display an aert at other times. IgorError accepts an Igor, Mac
OS, or XOP-defined error code and displays a dialog with the corresponding message.

Y ou may want to display an error message in your own dialog or window. In this case, cal
GetlgorErrorMessage. GetlgorErrorMessage accepts an Igor, Mac OS, or X OP-defined error
code and returns a string containing the corresponding message.

To display your own aert using a string that is not associated with an error code, you can use the
XOPOKAIlert, XOPOK Cancel Alert, XOPY esNoAlert, and XOPY esNoCancel Alert XOPSupport
routines.

131

Chapter 4 — Igor/XOP Interactions

132

XOPs and Preferences

If you are writing an XOP that has a user interface, you may want to save certain bits of
information so that the user does not need to re-enter them each time he or she uses the XOP. For
example, the GBL oadWave X OP saves the state of many of its dialog items and restores them the
next time the user invokes the dialog.

The SaveX OPPrefsHandle X OPSupport routine saves your XOP' s datain Igor preferences. Y ou
can later retrieve this data by calling the GetX OPPrefsHandle X OPSupport routine. As of this
writing the datais stored in the Igor preferences file but you can not count on this. A future
version of Igor may store your datain a separate file.

Each time you call either of these routines, the Igor preferencesfile is opened and closed.
Thereforeit is best to call each of them only once. One way to do thisisto call GetX OPPrefs-
Handle when your XOPs starts and SaveX OPPrefsHandle when you receive the CLEANUP

message.

The GetPrefsState callback provides away for you to know if preferences are on or off. This
allows an XOP to behave like Igor in regard to when user preferences are used versus when
factory default preferences are used, as described in the Igor Pro manual.

The data that you store will usually be in the form of a structure. As time goes by, you may want
to add fields to the structure. In that case, you have the problem of what happensif an old version
of your XOP receives the new structure. The easiest way to deal with thisisto define an ample
amount of reserved spacein very first incarnation of your structure. Set all of the reserved space
to zero. In future versions you can use some of the reserved space for new fields with the value
zero representing the default value. Old versions of your X OP will ignore the new fields.

XOPs and Experiments

If you develop an elaborate XOP, you might want it to store settings or documents as part of an
Igor experiment. Igor provides help in doing this.

When the user creates a new experiment or opens an existing experiment, Igor sends you a NEW
message. Y ou should reset your XOP settings to their default states. When the user opens an
experiment, Igor sends the LOADSETTINGS message. When the user saves an experiment, Igor
sends the SAVESETTINGS message.

Prior to Igor Pro 4, Igor aso sent LOAD and SAVE messages when the user opened or saved an
unpacked experiment. These messages were not suitable for Windows or OS X and are no longer
sent.

Chapter 4 — Igor/XOP Interactions

Saving and Loading XOP Settings

If your XOP has settings that it wants to save in each experiment then you need to respond to the
SAVESETTINGS and LOADSETTINGS messages. See the X OPSaveSettings and
XOPL oadSettings routinesin VDT2:VDT.c for an example of responding to these messages.

When the user saves an experiment, Igor sends your XOP the SAVESETTINGS message. If you
want to save settings in the experiment, you need to make a handle containing the settings. Return
this handle to Igor using the SetX OPResult routine. Once you'’ ve passed this handle back to Igor,
it belongsto Igor, so don’t access, modify, or deleteit.

Your datais stored in arecord of a packed experiment or in the miscellaneous file inside the
home folder of an unpacked experiment. Y ou should not attempt to access the data directly since
the method by which it is stored could be changed in future versions of Igor.

When the user opens an experiment, after sending the NEW message, Igor sends the
LOADSETTINGS message. The primary argument to this message, which you access using the
GetX OPltem cdll, is the handle to the settings that you saved in response to the SAVESETTINGS
message or NULL if you saved no settings in the experiment being opened. If it isnot NULL, use
this handle to restore your XOP to its previous state. The handle belongs to Igor and Igor will
dispose it when you return. If you need to, make a copy of the handle.

Igor sends the LOADSETTINGS message during the experiment recreation process before any of
the experiment’ s objects, such as waves, variables and data folders, have been created. If your
settings contain areference to an Igor object, you will not be able to access the abject until the
experiment recreation process is complete. For example, if your XOP receives IDLE messages,
you can access the object on the first IDLE message after the LOADSETTINGS message. Y ou
can also use the CLEAR_MODIFIED message for this purpose.

If your XOP isto run cross-platform, you must take special measures so that you can use settings
stored on Macintosh when running on Windows and vice-versa. Thisis necessary for two
reasons. First, unless you take precautions, structures that you declare on one platform will not
have the same layout as structures that you declare on the other platform, because of different
structure alignment methods. Second, Macintosh and Windows store multi-byte datain the
reverse order.

To make sure that your structures have the same layout on both platforms, you need to tell the
compiler how you want structures laid out. The sample X OPs on both Macintosh and Windows,
are set up to use two-byte alignment for all structures, thus satisfying this condition. For details
on this, see Structure Alignment on page 279.

133

Chapter 4 — Igor/XOP Interactions

134

If you are loading settings stored on one platform while running on the other, you need to do byte
reordering to fix the byte order. Before you can do byte reordering, you need to know what
platform the settings come from. Y ou can achieve this by putting a short (two byte) version code
into which you store avalue from 1 to 255 at the start of your settings structure. This ensures that
the high order byte will always be zero and the low order byte will always be non-zero. When
you receive the settings handle from Igor, you can examine the version code. If the high order
byte is zero, then you do not need to do byte reordering. If it is non-zero, then the settings come
from the other platform and you do need to do byte reordering.

The actual byte-reordering of a settings structure is a laborious process of reordering each field in
the structure. Y ou can call the XOPSupport FixByteOrder routine once for each field in your
structure to achieve this. If thisistoo much trouble, you can use default settingsif you receive
settings from the other platform.

The data that you store will usually be in the form of a structure. As time goes by, you may want
to add fields to the structure. In that case, you have the problem of what happensif an old version
of your XOP receives the new structure. The easiest way to deal with thisisto define an ample
amount of reserved spacein very first incarnation of your structure. Set all of the reserved space
to zero. In future versions you can use some of the reserved space for new fields with the value
zero representing the default value. Old versions of your XOP will ignore the new fields.

Chapter 4 — Igor/XOP Interactions

The IORecHandle

The IORecHandle is a handle to an IORec data structure which contains all of the information
that Igor and the XOP need to share. Each XOP has a global variable of type |IORecHandle
named X OPRecHandle which is defined in XOPSupport.c. The value of XOPRecHandle is set
when your XOP’s main function calls XOPInit.

Y ou should never deal with the IORecHandle directly since the routines in XOPSupport.c do this
for you. However, examining some of the uses of the |IORecHandle will help you get afeel for
the XOP protocol.

Resident and Transient XOPs

The XOPTypefield indicates to Igor the capabilities or mode of the XOP. Y ou set thisfield
using the SetX OPType X OPSupport routine. The value of XOPType will be some combination of
the following bit-mask constants which are defined in XOP.h.

Constant What It Means

RESIDENT XOP wants to remain in memory indefinitely.
TRANSIENT XOP wants to be closed and discarded.

IDLES XOP wants to receive periodic IDLE messages.

ADDS TARGET_WINDOWS XOP adds a target window typeto Igor.

The XOPTypefield isinititialized by Igor to RESIDENT. This means that the XOP will stay in
memory indefinitely. All XOPs that add direct operations or direct or indirect functionsto Igor
must be resident. XOPs that perform ongoing services in the background, such as data acquisition
XOPs, must also be resident. XOPs that are called very frequently should be resident to avoid the
need to repeatedly load and unload them.

In the distant past, when memory was a very scarce commodity, it was advantageous to make an
XOP transient if possible. Now, because of the greater availability of memory and because X OPs
that add direct operations or functions are not allowed to be transient, it is no longer
recommended.

For the rare case whereit is wise to make an XOP transient, here is how you do it. Once your
operation has done its work, call SetXOPType(TRANSIENT). Shortly thereafter Igor will call
your XOP with the CLEANUP message and will then purge your XOP from memory.

135

Chapter 4 — Igor/XOP Interactions

136

Receiving IDLE Messages For Background Processing
If you want your XOP to receive periodic IDLE messages you heed to call
SetXOPType (RESIDENT | IDLES)

Data acquisition XOPs and other X OPs that provide ongoing background services should make
this call.

Messages, Arguments and Results

The XOPEnNtry field in the |ORec structure contains the address of the routine that Igor calls to
pass a message to your XOP. The main function in your XOP must set thisfield so that it points
to your XOPEntry routine by calling the SetX OPEntry X OPSupport routine. All subsequent calls
from Igor, except for direct operation and direct function calls, go through your XOPEntry
routine.

Igor calls your XOPENtry routine, passing no direct parameters. Instead, |gor stores a message
code and any arguments that the message requiresin the your XOP's IORecHandle. Y ou call the
GetX OPM essage X OPSupport routine to determine the message that I1gor is sending you. Then, if
the message has arguments, you call the GetX OPItem X OPSupport routine to get them.

GetX OPMessage and GetX OPItem use the global X OPRecHandl e that was set when you called
XOPInit from your main function.

Sometimes your response to a message from Igor involves making a call back to Igor to ask it for
dataor aservice. For example, the FetchWave callback asks Igor for a handle to awave with a
particular name and the XOPNotice callback asks Igor to display sometext in the history area.
When you make a callback, the XOPSupport routines that implement the callback use the same
fieldsin the IORecHandle that Igor used when it passed the original message to you. For this
reason, it isimperative that you get the message and any arguments that Igor is sending to you
before doing any callbacks.

NOTE: When Igor passes a message to you, you must get the message, using GetX OPM essage,
and get al of the arguments, using GetX OPItem, before doing any callbacks. The
reason for thisis that the act of doing the callback overwrites the message and
arguments that Igor is passing to you.

Some messages from |gor require that you return aresult. Depending on the particular message,
the result may be an error code, a pointer or ahandle. Y ou return the result by calling
SetX OPResult. This XOPSupport routine stores the result in the result field of the IORecHandle.

When you do a callback to Igor, the X OPSupport routines may also use the result field to passa
result from Igor back to your X OP. For this reason, when you are returning aresult to Igor, you
must call SetX OPResult after doing any callbacksto Igor.

Chapter 4 — Igor/XOP Interactions

Handling Recursion

This section describes some problems that can occur due to recursion and how to handle them.
Simple XOPs will never encounter these problems. X OPs with windows or other elaborate XOPs
are more likely to encounter them.

There are some circumstances in which Igor will send a message to your XOP whileitis
servicing a callback from your XOP. Thisisrecursion and isillustrated in this diagram:

IGOR XOP

1. MENUITEM Message

2. XOPCommand Callback

3. UPDATE Message

In this example, Igor sends the MENUITEM message to your XOP telling it that the user has
invoked one of its menu items. As part of your XOP' s responsg, it does an XOPCommand
callback to get Igor to do something. As a side effect, the XOPCommand callback causes Igor to
update any windows that need updating. If your XOP has awindow and it needs updating, Igor
will send your XOP the UPDATE message whileit is still working on the MENUITEM message.

Igor sends the UPDATE message to Macintosh X OPs only. Windows X OPs receive the
WM_PAINT message from the Windows OS instead. However, the problem is the same - you
receive amessage at a possibly unexpected time, while you are in the middle of doing something
else

This problem can happen when you call the XOPCommand, XOPSilentCommand, SpinProcess
and DoUpdate X OPSupport routines. Each of these routines will cause Igor to send an UPDATE
message to your Macintosh XOP and may cause Windows to send aWM_PAINT message to
your Windows XOP..

Although this example involves the MENUITEM and UPDATE or WM_PAINT messages, the
problem is more general. Any time you do a callback to Igor, there is a chance that this will
trigger Igor to send another message to you.

Recursion such as this can cause problems unless you write your XOP to handle it. The problems
occur if, in servicing the UPDATE message from Igor or the WM_PAINT message from
Windows, your XOP clobbers information that it needs to finish servicing the MENUITEM
message or if your XOP isin adelicate state when it receives the X OP message. Fortunately, it is
possible to avoid this.

137

138

Chapter 4 — Igor/XOP Interactions

There are two things that you must do to handle recursion:

1. When Igor calls you with a message, get the message and all of its arguments before doing
any callbacksto Igor.

2. Don't useglobal variablesto store things that will change from message to message.
including the message and its arguments.

It turns out that most X OPs meet these requirements without any conscious effort on your part.

The reason for the first requirement is that Igor stores its message and argumentsin your XOP's
IORecHandle. In the example above, when Igor sends the UPDATE message, it clobbers the
message and arguments for the MENUITEM message. Thisis no problem if, as shown in the
sample XOPs, you use GetX OPMessage and GetX OPltems before doing any callbacks to Igor
and if you store their resultsin local variables.

The second requirement is easily met if you just avoid using global variables as much as possible.
Thisis good programming practice anyhow for reasons of modularity and insulation of routines
from other routines.

If you use XOPCommand or XOPSilentCommand as part of your initialization, you must be
aware that you may receive the UPDATE message before your initialization is complete. It isaso
possible to receive the UPDATE message at other times when your XOP isin the process of
changing its state and can not service the update normally.

The solution for thisisto use aflag to defer the true update until your XOP is ready to handle it.
Y ou can do thisas follows:
1. Setaflag when you enter your XOPENtry routine.

2. If your XOPENtry routine is called again, while the flag is set, short-circuit the message from
Igor (details below) and return.

3. Clear the flag when doing anormal exit from your XOPEntry routine.

For an UPDATE message on Macintosh, the short-circuiting works as follows:

1. Clear the update event by calling BeginUpdate followed immediately by EndUpdate. Thisis
necessary because, if you ignore the UPDATE message, the Macintosh toolbox will send the
update event over and over to Igor and thiswill block all other events.

2. Set aflag that will cause you to redraw your window at the next convenient opportunity.

Chapter 4 — Igor/XOP Interactions

Data Sharing

Igor and your X OP need to access each other's data. For example, your XOP may need to access
and manipulate Igor waves, numeric variables, and string variables. Y ou may need to pass a
handle containing your XOP's preferencesto Igor, to be stored in the Igor Preferences file.

Data can be shared by Igor and an XOP in one of four ways:
* Viavalues

* Viapointersto local data (on the stack)

* Viapointersto datain the heap

* Viahandlesto datain the heap

Vaues (e.g., ints, longs) and pointers are built-in elements of the C programming language. They
are documented in C programming books. No further explanation is needed.

Handles are extensions to C. Igor uses Macintosh-style handles, even when running on Windows.
Theterm "handle", as used in this manual, means a Macintosh-style handle (data type "Handle").
Windows-style handles (data type "HANDLE") are not used in any Igor-XOP interactions.
Handles are used in XOP programming relating to waves, menus, and strings, as well as for other
purposes.

When dealing with memory objects that are shared between Igor and your XOP, you must use

M acintosh memory management routines. The X OP Toolkit provides emulation for the necessary
Macintosh routines. When dealing with your own private data, you can use Macintosh routines,
standard C memory management routines, or Windows memory management routines.

Since manipulating memory pervades programming, it isimportant that you understand how
XOP memory management is done. If you are not familiar with Macintosh memory management,
take a detour to the section Macintosh Memory M anagement on page 261.

When dealing with Igor objects, such as waves, you never allocate and dispose memory directly.
Instead you call XOPSupport routines, such as MakeWave and KillWave. See Chapter 7 for
details on accessing |gor data.

139

140

Chapter 4 — Igor/XOP Interactions

Igor/XOP Compatibility Issues

As lgor evolves, WaveMetrics makes every attempt to maintain backward compatibility so that
your XOP will continue to work with new versions of Igor. However, you still need to make sure
that your XOP is compatible with the version of Igor that is running.

There are two situations that need to be handled:
* Therunning lIgor istoo old to work with your XOP.
* Your XOPistoo old to work with the running Igor.

To avoid compatibility problems you must do two things:
» Check the version of Igor that is running.
o Set thefields of your XOPI resource correctly.

Checking Igor’s Version

It isvery easy to make sure that the running Igor is not too old. The XOPInit routine in
XOPSupport.c, which your XOP calls from its main function, sets a global variable, igorVersion,
to the version number of the currently running Igor. For version 5.00, igorVersion will be 500.

For example, if your XOP uses features added to Igor in version 5.00, you must restrict your X OP
to running with Igor Pro 5.00 or later. Put the following in your XOP's main function:

if (igorVersion < 500) { // Requires Igor Pro 5.00 or later.
SetXOPResult (OLD_IGOR) ;
return;

Thistest must be placed after your call to XOPInit and SetX OPEntry.

OLD_IGOR isan XOP custom error code, defined in the XOP's .h file, with a corresponding
error string in the XOP's .r or .rc file. The error string should be something like "V DT2 requires
Igor Pro 5.00 or later" so that the user knows what version of Igor is required. XOP custom errors
are discussed on page 128.

If you want your XOP to work with older versions of Igor then you must check which version of
Igor you are running with before using features added in newer versions. Hereisatrivial
example.

Chapter 4 — Igor/XOP Interactions

static int
MakeTextWave (char* name, long numPoints)

{

waveHndl wavH;
long dimensionSizes [MAX DIMENSIONS+1];

if (igorVersion < 300) // Text waves were added in Igor Pro 3.0
return IGOR_OBSOLETE;

MemClear (dimensionSizes, sizeof (dimensionSizes)) ;
dimensionSizes[0] = numPoints;
return MDMakeWave (&wavH,name,NULL,dimensionSizes, TEXT WAVE TYPE, 1) ;

}

Thetest onigorVersion is not really necessary in this case because MDMakeWave does its own
testing and will return IGOR_OBSOLETE if the running version of Igor can not make the wave
as requested. It isimportant, however, that the routine that calls this routine be prepared to handle
an error.

If you do plan to support older versions of Igor, check the description of the XOPSupport routines
in Chapter 13 to see which version of Igor Pro they require and how they deal with older
versions.

XOP Protocol Version

Thefirst field of an XOP' s XOPI resource stores the “X OP protocol version” and is set to the
value XOP_VERSION. When Igor examines XOPs at launch time, it checks thisfield. If the
valuein thefield istoo low or too high, Igor concludes that the X OP is not compatible and
ignoresit. This provides away for Igor to make sure that your XOP is sufficiently compatible that
it isOK to call its main function where the XOP can do further version checking.

Igor 1.24 through 1.28 worked with X OPs whose X OP protocol version was 2 or 3.

Igor Pro 2 through Igor Pro 5 work with X OPs whose X OP protocol versionis2, 3 or 4. The
current value of XOP_VERSION is 4.

141

Chapter 4 — Igor/XOP Interactions

142

Adding Operations

OVEIVIBIW ..ttt sttt s e et be s e e tesaeebesbeensenbeereeneene 146
Igor Pro 4 Compatibilitycceeeiieiiiiee e 147
The SequENCE Of EVENTS.......c.oiiieeieieiseses s 147

The XOPC 1100 RESOUICEceeueerieeieeeesieeeeneesieeee e steesee e sseeseeseeeneeseesneeneenes 148
Operation CatEgOIESeiviieeeieiteeee st st e e ee e ste e se e re e resreeaenre s 149

Choose a Distinctive Operation NaIME ..o 150

Operation HandIerooiieeeee e 151

Creating Starter COUB..... oo e 152

Operation ParaMeterSccceiiiieieseeee e ae et ae e 154

The Command TEMPIALE.........ceiee e 155

Optional Par@mMELErS........coieiiiice ettt e nnes 157

MNEMONIC NAIMES.......cuiiiiriiriiii et sn s 158

The Runtime Parameter SITUCIUNEccvvveeereceece e 159

SUNG PArAMELEN'S ... 163

IMPORTANT ..ottt 163

NaAME Para@MELErS.......ceei it see e e e e e e sre e e s s snra e e s s saraeeeaans 163

WaAVE ParaMELENS.ooieiiieieie ettt b e sb e sae e saee e 164

Wave RaNge ParameLers..........cocvv e iiee et et 164

VarNameE PalramELEr'S..........oouiiiieieeieesiee e e 165

DataFolderANANamMeE Parameters..........cocvveeeeresieerieneseeseesessee e see e seesseeeens 166

SHUCKUIE ParamELES........ceieieiieieesiee ettt r e s 168
External Operation Structure Parameter Example..........cccoovveeeveieiceennnnne. 169
Extended Structure Parameters........ocvovevvveeeeene s eiese e 172
Extended Structure Parameter EXamplecccoovveieiieeneneeece e 173

Runtime Output Variables..........cocveii i 174

Starter Code DELAIIS......ccvvveeericeese e 175

Updating Starter COOR.oieeeieeeee ettt 176

SUPPOItING Old XOPS.......cceeiie ettt e re e s e e snees 177

143

Chapter 5 — Adding Operations

144

Operation Handler Checklist

Chapter 5— Adding Operations

145

Chapter 5 — Adding Operations

Overview

An external operation, like abuilt-in Igor operation, is aroutine that performs an action but has
no explicit return value. An operation has the following syntax:

<Operation Name>

[optional flags]

<parameter list>

The optional flags generally take one of the following forms:

Form Description

/F A flag by itself. Turns an operation feature on.

/F=£f A flag with a numeric or string parameter.

/F=(f1, f2, . . .) A flagwithasetof similar numeric or string parameters.
/F=[f1, f2, . . .1 A flagwithasetof numericindices.

/F={f1, £2, . . .} A flagwithalistof disparate numeric or string parameters.

If your XOP will run with Igor Pro 5 or later only you can use multi-character flags such as
/ABCD. The limit isfour characters.

<parameter list> consists of one or more numeric or string parameters or keywords. Here are
some common forms:

Form Examples

Numeric expression 3; sin(K0/3); 3 + sin(KO0/3)

String expression "Hello"; date(); "Today is" + date()
Wave list wave0, root:wavel, :wave2

Keyword=Vaue baud=9600, dayOfWeek=Monday, size={3.4,5.2}

A parameter must be separated from the next with a comma.
When you add an operation to Igor, you first need to decide the name of the operation and what

flags and parameters it will have. Usually, it is possible to use a syntax similar to an existing Igor
operation or external operation.

146

Chapter 5— Adding Operations

The main steps in creating an external operation are:

» Creating the XOPC resource which tells Igor what operations your XOP adds.

» Creating an operation template which tells Igor the syntax of your operation.

» Writing an ExecuteOperation function which implements the operation.

» Writing the code that registers the operation with Igor when your X OP is loaded.

Igor Pro 4 Compatibility

This chapter explains how to create an external operation using Igor Pro 5 or later. Igor Pro 5
includes afeature called “ Operation Handler” which greatly simplifies the process of creating an
external operation. In addition, Operation Handler makes it possible to call external operations
directly from Igor user functions. Prior to Igor Pro 5, to call an external operation from a user
function you had to use a kludge involving Igor’ s Execute operation.

If your XOP must run with Igor Pro 4, you must use the old method of implementing an external
operation. To reduce clutter, the old method is not documented in this manual. See Chapter 5in
the XOP Toolkit 3.1 manual which isincluded on the XOP Toolkit CD ROM or contact
WaveMetrics support to receive the XOP Toolkit 3.1 manual in PDF form.

The Sequence of Events

When Igor starts up, it searches the Igor Extensions folder and subfolders, looking for XOP files.
When it finds an XOP file, Igor looks for an XOPC 1100 resource in the file. Thisresource, if it
exists, defines the operation or operations that the XOP adds to Igor.

If the user invokes one of these operations from Igor’s command line or from amacro, Igor loads
the XOP into memory and calls its main function (if it's not already loaded). The XOP' s main
function calls RegisterOperation, an X OPSupport routine through which the XOP tells Igor the
syntax of the operation and the address of the XOP function which Igor should call to implement
it.

Next Igor parses the operation parameters and uses them to fill a structure. It then calls the XOP

function, passing the structureto it.

The XOP carries out the operation and returns aresult code to Igor. If the result code is non-zero,
Igor displays an error dialog with an appropriate error message.

The sequence of eventsis similar when an external operation is called from a user-defined
function except that Igor loads the XOP when the function is compiled in order to determine the
operation’s syntax.

147

Chapter 5 — Adding Operations

The XOPC 1100 Resource

Asanillustration, hereis the XOPC resource for the Simplel oadWave sample XOP.

// Macintosh, in the SimplelLoadWave.r file.

resource 'XOPC' (1100) { // Operations added by XOP.
{
"SimpleLoadWave", // Name of operation.
XOPOp + UtilOP + compilableOp, // Operation category specifier.

!
}i

// Windows, in the SimpleLoadWaveWinCustom.rc file.

1100 XOPC // Operations added by XOP.
BEGIN
"SimplelLoadWave\0", // Name of operation.
XOPOp | utilOp | compilableOp, // Operation category specifier.
"\o" // NOTE: NULL required to terminate the resource.
END

An XOP can add multiple operations to Igor. In this case, there will be additional name/category
pairsin the X OPC resource.

The compilableOp flag tells Igor that this is an Operation Handler-compatible external operation.

If thisflag is missing, Igor will deal with the external operation using the old method documented
in the XOP Toolkit 3.1 manual.

148

Chapter 5— Adding Operations

Operation Categories

The operation category specifier is some combination of the symbols shown in the following

table. The operation category controls when the operation will appear in Igor’s Help Browser
Command Help list. For example, if the category includes the XOPOp and dataOp bits, it will
appear in the list when All, External or Wave Analysis are selected in the Operations popup

menu.
Symbol Bit Value Operation Help Dialog Category
displayOp 1 Other Windows

waveOp 2 About Waves

dataOp 4 Wave Analysis

cursorOp 8 Controls and Cursors

utilOp 16 Programming & Utilities

XOPOp 32 External

compilableOp 64 Operation Handler-compatible
graphOp 128 Graphs

tableOp 256 Tables

layoutOp 512 Layouts

alWinOp 1024 All Windows

drawOp 2048 Drawing

ioOp 4096 1/0

printOp 8192 Printing

The compilableOp bit does not affect the Help Browser. It tells Igor that the external operation is
implemented using Operation Handler.

For most XOPs the category will include the XOPOp and compilableOp bits plus at least one
other bit, depending on the functionality of the operation. If in doubt, use utilOp.

149

Chapter 5 — Adding Operations

150

Choose a Distinctive Operation Name

NOTE: The names of an XOF' s operations must not conflict with the present or future names
of Igor’s built-in operations or functions or with the present or future names of any
other XOP' s operations or functions. Don’t use a vague or general name. If you choose
aname that clearly describes the operation’s action, chances are that it will not conflict.

The name that you choose for your operation becomes unavailable for use as a wave name,
window name or global variable name. For example, if you name your operation Test then you
can not use the name Test for any Igor object. If you have existing experiments that use Test, they
will bein conflict with your XOP. Therefore, pick a name that is unlikely to be useful for any
other purpose. Thisis especially important if you plan to share your XOP with other Igor users
since they are probably not prepared to deal with errors when they open existing experiments.

Chapter 5— Adding Operations

Operation Handler

Operation Handler is a part of Igor that makes it easy to create an external operation that can be
executed from the command line, from a macro or from a user function. It was added in Igor Pro
5.

Command line and macro operations are interpreted while user function operations are compiled
and then later executed. The Operation Handler ssimplifies implementation of an operation in al
of these modes.

Here is an outline of what you need to do to use Operation Handler:

1. Define acommand template - a string that describes the syntax and parameters of your
operation.

2. Define aruntime parameter structure which contains fields for your operation's parameters
arranged in the prescribed order.

3. Writearoutine that registers your operation with Igor. Thisis called your RegisterOperation
function.

4. Write aroutine that executes your operation, given a pointer to your runtime parameter
structure. Thisis called your ExecuteOperation function.

Set the compilableOp bit in the XOPC resource for the operation.

When your XOP isinitialized, call your RegisterOperation function to register your
operation.

The good news isthat Operation Handler can do steps 2 and 3 for you and can get you started on
step 4. Thisis described in detail under Creating Starter Code in the next section.

When your operation is invoked from the command line, from a macro or from a user function,
Igor will process any supplied parameters and then call your ExecuteOperation function, passing
the runtime parameter structure to you. Y ou will use the parameters to perform the operation.

The Operation Handler handles al of the details of compiling your operation in a user function
and of parsing parameters when your operation isinvoked from the command line or from a
macro.

Before we get into the details, we will take a short side trip to see how Operation Handler
generates starter code for you.

151

Chapter 5 — Adding Operations

Creating Starter Code

Operation Handler can automatically generate starter code for you, including a complete
definition of your runtime parameter structure, a mostly complete definition of your
RegisterOperation function, and a skeleton for your ExecuteOperation function. To get your
starter code, you execute a ParseOperationTemplate command from within Igor.
ParseOperationTemplate takes your command template and generates your starter code and stores
it in the clipboard. Anything previously in the clipboard is overwritten. Y ou can then paste into
your source file.

The best way to use this feature is to create an experiment to store the template for your external
operation and create a function within the experiment to create the starter code. For an example,
see the experiment “ Simplel oadWave Template.pxp”. Y ou can create your own template
experiment by duplicating that file.

“Simplel oadWave Template.pxp” contains the following code:

Menu "Macros"
"CopySimpleLoadWaveCode"

End

Function CopySimpleLoadWaveCode () // Copies starter code to the clipboard.
String cmdTemplate = "SimpleLoadWave"
cmdTemplate += " " + "/A[=name:ABaseName]"
cmdTemplate += " " + "/D"
cmdTemplate += " " + "/I"
cmdTemplate += " " + "/N[=name:NBaseName]"
cmdTemplate += " " + "/O"
cmdTemplate += " " + "/P=name:pathName"
cmdTemplate += " " + "/Q"
cmdTemplate += " " + "/W"
cmdTemplate += " " + "[string:fileParamStr]"

ParseOperationTemplate/T/S=1/C=2 cmdTemplate
End

CopySimpleloadWaveCode copies the starter code to the clipboard. After executing it (or your
version of it), you can paste from the clipboard into your source file. The generated code includes
the following:

A comment showing the operation template.
A complete runtime parameter structure.
A skeleton ExecuteOperation function that you need to fill out.

A mostly complete RegisterOperation function which you need to call from your main
function.

152

Chapter 5— Adding Operations

Before proceeding, you may want to open the “ SimpleL oadWave Template.pxp” experiment in
Igor and execute the CopySimpl el oadWaveCode function. Then paste the generated code into a
text file and take alook at it. Don’t worry about the details at this point. They are explained in the
following sections.

Igor Pro 5.00 and 5.01 had a bug in the automatic code generation for external operations. See
page 541 for details.

153

154

Chapter 5 — Adding Operations

Operation Parameters

Parameters come in two main kinds: flags and main parameters. Main parameters come in two
types: simple main parameters and keyword=value main parameters.

SampleOp /F=3/K={A,3.2} wave0, wavel
flal\gs simrl)le main parszeters
SampleOp /F=3/K={A,3.2} waves={wave0,wavel}
flal\gs kevaordzvaI ue main parameter

Flags and keywords can specify asingle value (/A=1) or a set of values (/A={1,2,3}). A flag and
its values, akeyword and its values, or a simple parameter are each called a "parameter group”.
Each individual value associated with aflag, keyword or simple parameter iscaled a
"parameter".

Y our command template can specify any number of flag groups. Asfor main parameters, it can
specify any number of keyword groups or simple groups, but you can not mix keyword and
simple groups as main parameters in the same operation.

When the user invokes the operation, flags and keywords may appear in any order. Simple
parameters, if they appear at all, must appear in the order specified in the command template.

Optiona parameters are supported as described below on page 157. Parameters that are required
(i.e., not optional) must be supplied when the operation is compiled or interpreted. If required
parameters are missing, Operation Handler detects this and generates the appropriate error

message.

Chapter 5— Adding Operations

The Command Template

Y ou must provide a command template when you call RegisterOperation. A command templateis
aplain text string. The format of the command templateis:

<OperationName> <flag descriptions> <main parameter descriptionss>

For example:

SampleOp /O /P=name /Y={number,number} keyl={number,string}

This says that the operation name is SampleOp, that it accepts three flag groups and one keyword
group. In this example, the parameter groups are:

/0 // A flag group with no parameters
/P=name // A flag group with one parameter
/Y={number, number} // A flag group with two parameters
keywordl={number, string} // A keyword group with two parameters

The name of the operation must appear in the template without any leading spaces. A spaceis
required before the start of the main parameters. Otherwise spaces are optional and can be added
anywhere.

Flag and keyword parameter groups can use parentheses, brackets or braces to enclose alist of
parameters. Usually braces are used. The leading parenthesis, bracket or braceis called the
"prefix" character and the trailing parenthesis, bracket or brace is called the "postfix" character.

Parameters within a group are separated by commas.

In flag parameters, there is no separator between one group and the next:

SampleOp /A=number /B=string

In main parameters, one group is separated from the next by a comma:

SampleOp number, string
SampleOp keyl=number, key2=string

Thereis one exception to this. The keyword 'as’ can be used in place of comma between one
simple main parameter and the next. Thisis a special case that supports syntax like this:

Save wave as string

In this case, ‘as’ would appear both in the command template and in the actual command.

155

Chapter 5 — Adding Operations

156

This special case isintended to support save-file syntax. It does not work if the first parameter is
numeric.

The recognized parameter type keywords are:

number

string

name

wave

waveRange

varName

dataFolderAndName

structure (Igor Pro 5.03 or later)

Most operations will use number, string, name and wave parameters. The varName, waveRange,
dataFolderAndName and structure types are less common.

The waveRange parameter typeis used to allow the user to specify an input wave or a subset of a
1D input wave, for example wavel(x1,x2) or wavel[pl,p2]. Igor's CurveFit operation is an
example of an operation that supports this syntax.

The varName parameter type is used when a parameter must be the name of alocal or global
variable or NVAR or SVAR. This applies when an operation wants to return avalue viaa
variable whose name is specified as a parameter. For example, Igor's Open operation takes a
refNum parameter which is the name of a numeric variable, and stores afile reference number in
the specified variable.

The dataFolderAndName parameter typeistypically used for operations that create waves. For
example, Igor's Duplicate operation takes a destWave parameter. Since the destination wave may
not exist when Duplicate runs, the destWave parameter can not be of type wave. Using a
dataFolderAndName parameter alows the user to reference an object that does not yet exist.

The structure parameter type would be used by advanced programmers to pass pointers to
structures between an Igor user-defined function and an X OP.

Chapter 5— Adding Operations

Optional Parameters

Optional parameters are designated using brackets. There are three types of optional parameters,
as the following examplesillustrate:

// Optional flag or keyword parameters
SampleOp /A[=<parameterss>]
SampleOp keyl [=<parameterss]

// Normal optional parameters
SampleOp /A={number[,string, wavel }
SampleOp keyl={number[,string, wavel }
SampleOp number [, string, wavel]

// Array-style optional parameters
SampleOp /A={number, string[3]}
SampleOp keyl={number, string[3]}
SampleOp number, stringl[3]

Using the optional flag or keyword syntax allows the user to supply or omit the equals sign and
subsequent parameters after aflag or keyword.

Using the normal optional parameter syntax allows you to designate that some parameters are
required and the rest are optional. Do not nest sets of brackets for this purpose. Just one set is
allowed.

Using the array-style optional parameter syntax allows you to specify that zero or more
parameters of a particular type appear at the end of a parameter group or at the end of the main
parameter list.

When creating a Save Wave type of operation, you can combine the 'as’ keyword and the array-
style optional parameters like this:

Save wave[100] as string

In this case at |east one wave must be specified in the command before the *as’ keyword. Support
for this syntax was added in Igor Pro 5.02. If you use this syntax, you must check Igor’s version
as described on page 140.

Other than the usages shown above, no other use of brackets to indicate optional parametersis
alowed. For example, the following is not needed or allowed:

SampleOp [/A/B=number/C=string] // WRONG

157

Chapter 5 — Adding Operations

All flag and keyword groups are always optional. In other words, the user can always omit any
flag or keyword and this fact is not to be indicated by brackets in the template.

As explained below, you can do aruntime check to seeif a particular parameter group was
supplied when the operation was invoked. Y ou can also do a runtime check to see if a parameter
within a group was supplied.

When the user invokes the operation, simple main parameters must appear in the order given by
the command template if they appear at all. Flag groups and keyword groups can appear in any
order.

If aflag or keyword group takes a prefix character (parenthesis, bracket, brace) and all of the
parameters except the first are optional, Operation Handler will allow the user to invoke the group
without the prefix character and with just one parameter. This alows you to change the syntax of
agroup from:

/A=value or keyword=value

to
/A=={valuel[, value2]} or keyword={valuel[, value2]}

and yet to maintain backward compatibility. Old Igor procedure code that omits the prefix
character will still work and new code that uses the prefix character will also work. At execution
time, you test to seeif the second parameter was set.

Mnemonic Names

Although it is not required, you can and should include mnemonic namesin your template. Here
is an example template that includes mnemonic names.

SampleOp /O /P=name:pathName /Y={number:offset, number:scale}

The underlined words are mnemonic hames. At present the only use for mnemonic namesisto
allow Igor to generate more meaningful starter code for you. In the future, Igor may use the
mnemonics for other purposes and may reguire the mnemonic name. Consequently, it is strongly
recommended that you supply them.

158

Chapter 5— Adding Operations

The Runtime Parameter Structure

When you create your starter code, Operation Handler will define a structure into which it will
store parameters and other values at runtime. When your operation isinvoked, Igor will passthis
structure to you. The format of the runtime parameter structure is best understood through a
simple example. Assume that your command templateis:

SampleOp /A=number:aNum /B={string:bStrH,name:bName} /C=wave:cWaveH
keyl={number:keylNum, string:key2StrH},
key2={name:key2Name, wave:key2WaveH}

159

Chapter 5 — Adding Operations

160

When you create your starter code, Igor will define this runtime parameter structure:
#include "XOPStructureAlignmentTwoByte.h" // Set structure alignment.

struct SampleOpRuntimeParams {
// Flag parameters.

// Parameters for /A flag group.
int AFlagEncountered;

double aNum;

int AFlagParamsSet [1];

// Parameters for /B flag group.
int BFlagEncountered;

Handle bStrH;

char bName [MAX OBJ NAME+1] ;

int BFlagParamsSet [2];

// Parameters for /C flag group.
int CFlagEncountered;

waveHndl cWaveH;

int CFlagParamsSet[1];

// Main parameters.

// Parameters for keyl keyword group.
int keylEncountered;

double keylNum;

Handle keylStrH;

int keylParamsSet [2];

// Parameters for key2 keyword group.
int key2Encountered;

char key2Name [MAX OBJ NAME+1] ;
waveHndl key2WaveH;

int key2ParamsSet [2] ;

// These are postamble fields that Igor sets.
int calledFromFunction; // 1 if called from a user function.
int calledFromMacro; // 1 if called from a macro.

}i

typedef struct SampleOpRuntimeParams SampleOpRuntimeParams;

typedef struct SampleOpRuntimeParams* SampleOpRuntimeParamsPtr;

#include "XOPStructureAlignmentReset.h" // Reset structure alignment.

Y ou can use any name for any field in the structure so long as the names are unique.

Chapter 5— Adding Operations

It iscritical that the structures fields fit the specification and match the command template that
you pass to RegisterOperation. If you change the command template and fail to change the
structure or vice versa, a crash will likely occur.

All structures passed between Igor and an X OP use two-byte packing. Y ou must use the
#includes shown above to guarantee this.

Y ou can use the calledFromFunction and calledFromMacro fields to determine how your
operation was called, although thisis usually not necessary.

For each parameter group, there will be afield to indicate if the group was encountered in the
command, followed by afield for each parameter in the group, followed by an array that indicates
which parametersin the group actually appeared in the command. In the example above, the
BFlagEncountered will be non-zero if the command included a/B flag. The bStrH and bName
fields contain the values specified for the parameters to the /B flag. The BParamsSet array
contains an element for each parameter in the group and tells you if the corresponding parameter
was present in the command.

For each number parameter, there is a corresponding double field, for each string parameter a
corresponding Handle field, for each name or VarName parameter a corresponding array of
MAX_OBJ NAME+1 characters, for each wave parameter a corresponding waveHndl field, for
each waveRange parameter a corresponding WaveRange field, for each dataFolderAndName
parameter a corresponding DataFolderAndName field, and for each structure parameter a
corresponding pointer field.

These parameter fields are arranged in groups that correspond to parameter groups.

In the example above, BParamsSet[0] tells you if the string parameter to /B was specified and
BParamsSet[1] tells you if the name parameter to /B was specified. In this example, al of the
parameters in the group are required, so, if BFlagEncountered is non-zero then BParamsSet[0]
and BParamsSet[1] are guaranteed to also be non-zero and you don't need to test them. Y ou
would test the BParamsSet array elementsif the /B flag had optional parameters. The number of
elements in the ParamSet array must match the total number of parameters in the parameter
group, including any optional parameters.

If your command template includes a flag or keyword with no parameters then there will be just
onefield for that group - the field that tells you if the flag or keyword was encountered in the
command.

161

162

Chapter 5 — Adding Operations

When used in aflag or keyword group, a set of array-style optional parametersis represented as
an array in the structure. For example, if the command template contains

key3={string:key3StrH,number [2] :key3Num}
thisis represented in the runtime parameter structure as:

int key3Encountered;

Handle key3StrH;

double key3Num[2]; // Optional parameter.
int key3ParamsSet [3];

When used as a simple main parameter, a set of array-style optional parametersis also
represented as an array in the structure. For example, if the command template ends with

string:strH, number [2] :num
thisis represented in the runtime parameter structure as:

// Parameters for simple main group #0.
int strHEncountered;

Handle strH;

int strHParamsSet [1];

// Parameters for simple main group #1.

int numEncountered;

double num[2]; // Optional parameter.
int numParamsSet [2] ;

At execution time, Operation Handler sets the "Encountered"” field for each parameter group to
sequential values starting from 1, indicating the order in which parameter groups were
encountered. For most operations this order isimmaterial and al you care about isif thefield is
Zero or non-zero.

Each parameter group can be set only once by a single command. Operation Handler returns an
error if auser triesto set a given parameter group twice.

Chapter 5— Adding Operations

String Parameters

Each string parameter is passed to you in a handle. The handle for a string parameter can be
NULL. Thiswould happen if, for example, the user used an SVAR reference to pass a global
string to you and the global string did not exist at runtime. Y ou must alwaystest a string handle.
If itisNULL, do not useit. If the string is required for the operation, return the
USING_NULL_STRVAR error code.

IMPORTANT

Do not dispose string parameter handles. Also do not access string handles after your
ExecuteOperation function returns. Igor will dispose them automatically when your
ExecuteOperation function returns.

If you want to retain string data for later use, you must make your own copy of the string handle,
using the HandToHand function or copy the string to a C string using GetCStringFromHandle. In
thisregard, external operations and external functions work differently. In an external operation,

you must not dispose string parameter handles. In an external function, you must dispose them.

String handles are not C strings and are not null-terminated. Use GetHandleSize to determine the
number of charactersin the string. Y ou can use the GetCStringFromHandle X OPSupport routine
to move the charactersinto a C string.

Name Parameters

Igor names consist of MAX_OBJ NAME characters. An example of a name parameter is the
name of an Igor symbolic path in a/P=pathName flag. The user can specify a name parameter as
$", in which case the corresponding name field of the runtime parameter structure will be an
empty string. Usually, an operation treats this the same as if the parameter were not specified in
the command.

163

164

Chapter 5 — Adding Operations

Wave Parameters

Waves are passed to you as wave handles. Wave handles always belong to Igor. Y ou must never
dispose or directly modify awave handle.

The handle for awave parameter can be NULL. Thiswould happen if, for example, the user used
aWAVE reference to pass awave to you and the wave did not exist at runtime. Y ou must always
test awave handle. If itisNULL, do not useit. If the wave is required for the operation, return a
NOWAV error code.

The user can use * in place of awave name when awave parameter is expected. Thiswill result
in anull wave handle in the runtime parameter structure. If the wave is required for the operation,
return aNOWAY error code. Otherwise, interpret this to mean that the user wants default
behavior.

Y ou must make sure that you can handle the data type of the wave. For example, if your
operation requires a numeric wave, you must return an error if passed atext wave. Also check the
numeric type and dimensionality if appropriate.

Wave Range Parameters

Wave range parameters are passed to you as WaveRange structures. This structure is defined in
IgorX OP.h:

struct WaveRange {
waveHndl waveH;

double startCoord; // Start point number or x value
double endCoord; // End point number or x value
int rangeSpecified; // 1 1if user specified range.
int isPoint; // 0: X values. 1: Points.

}i

The waveH field can be NULL. If itis, you should return NOWAYV, unless you want to allow a
null wave. As with the wave parameter, the user can use * in place of the wave name. Also as
with the wave parameter, you must check the wave's type to make sure it isatype you can
handle.

If the rangeSpecified field is zero, then the command did not specify arange of the wave. In this
case, the isPoint field will be non-zero, the startCoord field will contain zero and the endCoord
field will contain the number of the last point in the wave, treating the wave as 1D regardless of
its actual dimensionality.

If the rangeSpecified field is non-zero then the command did specify arange. If isPoint is non-
zero then startCoord and endCoord will contain point numbers. If isPoint is zero then startCoord
and endCoord will contain X values.

Chapter 5— Adding Operations

Regardless of how the command was specified, you can use the CalcWaveRange routine to find
the point numbers of the range of interest like this. This example assumes that the runtime
parameter structure contains a WaveRange field named source.

long startPoint, endPoint;
int direction;

startPoint = p->source.startCoord;

endPoint = p-s>source.endCoord;

direction = 1;

if (p->source.rangeSpecified) {
WaveRangeRec wr;

MemClear (&wr, sizeof (WaveRangeRec)) ;

wr.x1l = p->source.startCoord;

wr.x2 = p->source.endCoord;

wr.rangeMode = 3;

wr.1isBracket = p->source.isPoint;

wr.gotRange = 1;

wr.waveHandle = p->source.waveH;

wr . .minPoints = 2;

if (err = CalcWaveRange (&wr))
return err;

startbPoint = wr.pl;
endPoint = wr.p2;
direction = wr.wasBackwards ? -1:1;

VarName Parameters

A varName parameter is used in rare situations when the parameter to an operation is the name of
anumeric or string variable into which the operation isto store a value. When invoking an
operation with avarName parameter, the user can pass the name of a global variable, the name of
alocal variable, or, when executing from a user function, the name of an NVAR or SVAR.

When called from the command line or from a macro, the VarName field contains an actual
variable name. When called from a user function, it actually contains binary data that Igor usesto
locate the local variable, NVAR or SVAR into which datais to be stored. Consequently, you
should never use the value of the VarName field, except to passit to Igor.

To store avalue in avariable referenced by aVarName parameter, you must use the
StoreNumericDataUsingVarName or StoreStringDatalUsingV arName X OPSupport functions.
These call back to Igor which knows how to store into global variables, local variables, NVARS
and SVARs.

165

Chapter 5 — Adding Operations

166

DataFolderAndName Parameters

A dataFolderAndName parameter is used when you need to get the name and location of awave
that may not yet exist. For example, the Duplicate operation takes a source wave and a destination
wave name. The destination wave may or may not already exists.

A dataFolderAndName parameter can also be used to get the name of an existing data folder or
the name of a data folder to be created.

The runtime parameter structure contains a DataFolderAndName structure for a corresponding
dataFolderAndName parameter. The DataFolderAndName structure is defined in IgorX OP.h:
struct DataFolderAndName {

DataFolderHandle dfH;
char name [MAX OBJ NAME+1] ;

}i

Typically the dfH and name fields of this structure would be passed to MDMakeWave to create a
destination wave.

The DataFolderAndName type parameter is often used to allow the user to specify the name of
the operation's destination wave. Traditionally, when an operation that allows you to specify a
destination wave is compiled into a user function, if the user uses a simple name for the
destination wave, the Igor compiler automatically creates a wave reference in the function for that
wave. For example, if you write this:

Duplicate wave0, wavel

the Igor compiler automatically creates awave reference for wavel, asif you wrote:

Duplicate wave0, wavel
Wave wavel

This automatic local wave reference is created only if the user uses a simple name, not if the user
uses $<name>, a partial datafolder path or afull data folder path.

The DataFolderAndName type parameter allows you to do the same thing, but you have to use
special syntax for the mnemonic name when writing the operation template. Consider this
operation template:

SampleOp DataFolderAndName: {dest,real}

This template declares a DataFolderAndName parameter with a mnemonic name "dest” which,
when compiled into a user function, automatically creates awave reference for the destination
wave, if the user uses asimple name. The "real" keyword specifies the type of the destination
wave. Other options are "complex" and "text".

Chapter 5— Adding Operations

Asof Igor Pro 5.04, if awave reference for the specified destination already exists when the
operation is compiled, it will not attempt to create a new wave reference. This allows the Igor
programmer to indicate the actual type of the destination wave for those operations, such as FFT,
in which the destination wave can be of different types depending on operation parameters.

See the documentation for Igor's DWT operation for an example of how to document this
automatic creation of wave references.

If your operation can create a destination wave of different types depending on circumstances,
you should pick the most likely type. See the documentation for Igor's FFT operation for an
example of how to document this behavior.

Using the special syntax shown above causes Igor to create an automatic wave reference under
the conditions explained above. However, the automatic wave reference will be NULL until you
set it by calling SetOperationWaveRef.

The SetOperationWaveRef callback sets the automatically created wave reference to refer to a
specific wave, namely the wave that you created in response to the DataFol derAndName
parameter. Y ou must call it after successfully creating the destination wave.

SetOperationWaveRef will do nothing if no automatic wave reference exists.
Y our code should look something like this:

// In your RuntimeParams structure
DataFolderAndName dest;
int destParamsSet [1];

// In your ExecuteOperation function
destWaveH = NULL;
err=MDMakeWave (&destWaveH, p->dest .name, p->dest.dfH,dimSizes, type, overwrite) ;
if (destWaveH != NULL) {
int waveRefIndentifier = p->destParamsSet[0];
err = SetOperationWaveRef (destWaveH, waveRefIndentifier);

}

SetOperationWaveRef was added in XOP Toolkit 5.04 and Igor Pro 5.04B05. If you call it with
an earlier version of Igor, it will return IGOR_OBSOLETE and do nothing.

Y ou can aso use a DataFolderAndName parameter to get the name of a data folder rather than a
wave. In this case, the dfH field of the DataFolderAndName structure will contain the parent data
folder handle and the name field will contain the name of the child data folder which may or may
not exist. The root data folder is aspecia case. If theroot is specified in the command then the
dfH field will contain the root data folder handle and the name field will be empty. Hereis code
that gets a handle for an existing data folder and takes the special case into account:

167

Chapter 5 — Adding Operations

dataFolderH = p->df.dfH;

if (dataFolderH == NULL)
return EXPECT DATAFOLDER NAME;
if (p->df.name[0] != 0) {

if (err = GetNamedDataFolder (dataFolderH, p->df.name, &dataFolderH))
return err;

Structure Parameters

Igor Pro 5.03 added the ability to pass a pointer to a structure as a parameter to an external
operation. Thisis atechnique for advanced programmers.

If you use this feature, your XOP will require Igor Pro 5.03 or later. You should put atest in your
main function to make sure that you are running with a recent enough version. See Checking
Igor's Version on page 140 for details.

Structure parameters are passed as pointers to structures. These pointers always belong to Igor.
Y ou must never dispose or resize a structure pointer but you may read and write its fields.

Aninstance of an Igor structure can be created only in a user-defined function and exists only
while that function is running. Therefore, when a structure must be passed to an external
operation, the operation must be called from a user-defined function, not from the command line
or from amacro. An external operation that has an optional structure parameter can be called
from the command line or from amacro if the optional structure parameter is not used.

The pointer for a structure parameter can be NULL. Thiswould happen if the user supplies* as
the parameter or in the event of an internal error in Igor. Therefore you must awaystest a
structure parameter to make sureit isnon-NULL before using it.

If you receive aNULL structure pointer as a parameter and the structure is required for the
operation, return an EXPECTED_STRUCT error code. Otherwise, interpret this to mean that the
user wants default behavior.

Here is an example of a command template that specifies a structure parameter:

DemoStructOp structure: {sp:DemoStruct}
In this example, “structure” isthe parameter type, “sp” isthe parameter name and “ DemoStruct”

is the name of the type of structure expected. When Igor compiles a call to your operation, it will
require that the structure passed as a parameter be of the specified type. Thus, users of this

168

Chapter 5— Adding Operations

operation are forced to declare a structure type named DemoStruct. Choose a structure type name
that is distinct and unlikely to be used for any other purpose.

Y ou must make sure that the definition of the structure in Igor matches the definition in the XOP.
Otherwise acrash islikely to occur.

In very rare cases, you might want to define an operation that takes any type of structure. In such
cases you should use the extended form of the structure parameter, described under Extended
Structure Parameters on page 172.

External Operation Structure Parameter Example
Here isIgor procedure code which passes a structure to an external operation.

Constant kDemoStructVersion = 1000

Structure DemoStruct // Structure of parameter to DemoStructOp.
uint32 version // Structure version.
double num
String str

EndStructure

Function TestDemoStructOp ()
String tmp

STRUCT DemoStruct s

s.version = kDemoStructVersion
s.num = 1
s.str = "Testing structure parameter"

DemoStructOp s
End

Here is C code that implements the external operation. Most of this code would be automatically
generated by Operation Handler when you execute this command within Igor:

ParseOperationTemplate/T/S=1/C=2 "DemoStructOp structure:{sp:DemoStruct}"
#include "XOPStructureAlignmentTwoByte.h"

#define kDemoStructVersion 1000 // 1000 means 1.000.
struct DemoStruct {
unsigned long version; // Structure version.

double num;

Handle strH;
typedef struct DemoStruct DemoStruct;
#include "XOPStructureAlignmentReset.h"

169

170

Chapter 5 — Adding Operations

// Operation template: DemoStructOp structure:sp

// Runtime param structure for DemoStructOp operation.
#include "XOPStructureAlignmentTwoByte.h"
struct DemoStructOpRuntimeParams {

¥

// Parameters for simple main group #0.
int spEncountered;

DemoStruct* sp;

int spParamsSet[1];

// These are postamble fields that Igor sets.
int calledFromFunction;
int calledFromMacro;

typedef struct DemoStructOpRuntimeParams DemoStructOpRuntimeParams;
typedef struct DemoStructOpRuntimeParams* DemoStructOpRuntimeParamsPtr;
#include "XOPStructureAlignmentReset.h"

static int
ExecuteDemoStructOp (DemoStructOpRuntimeParamsPtr p)

{

DemoStruct* sp;
char buf[256];

char str[128];

int err = 0;

sp = NULL;
// Flag parameters.

if (p->spEncountered)

Sp = p->8p;
if (sp == NULL) {
strcpy (buf, "sp is NULL"CR STR) ;
else
if (sp->version != kDemoStructVersion)

err = INCOMPATIBLE STRUCT VERSION;
goto done;

}

if (err = GetCStringFromHandle (sp->strH, str, sizeof(str)))
goto done;

sprintf (buf, "sp->num = %$g, sp->strH = \"%s\"", sp->num, Str);

}

XOPNotice (buf) ;

done:

}

return err;

Chapter 5— Adding Operations

int
RegisterDemoStructOp (void)

{

char* cmdTemplate;
char* runtimeNumVarList;
char* runtimeStrVarList;

cmdTemplate = "DemoStructOp structure:{sp:DemoStruct}";

runtimeNumVarList = "";

runtimeStrVarList = "";

return RegisterOperation (cmdTemplate, runtimeNumVarList,
runtimeStrVarList, sizeof (DemoStructOpRuntimeParams),
(void*) ExecuteDemoStructOp, 0) ;

}

The Igor procedure code must declare a DemoStruct structure and the C code must declare a
matching C structure. The use of the version field is a convention for preventing a crash if the
procedure version of the structure and the C version get out-of-sync.

The Igor code declares the DemoStruct structure. It then creates and initializes an instance of it,
named s. It then passes s (actually a pointer to s) to the DemoStructOp external operation.

The DemoStructOp external operation first checks that a valid pointer has been passed. It then
checks that the version of the structure is compatible before accessing its fields. It can read, write
or read and write any of thefields.

An advanced programmer may want to use a more flexible versioning scheme by allocating
reserved fields in the structure and then using the version field to handle whatever version of the
structure was passed from the Igor procedure. If possible you should simplify your life by using
the simplified versioning technique shown above. However, if you decide to save structure datato
disk and later read it back, you will have to deal with more complex versioning issues, aswell as
cross-platform byte-order issues. Y ou will also have to deal with versioning issuesif your XOP
will be used by many people and you can not force them to update their Igor procedure code
when you update your X OP.

For further important details see Using I gor Structures as Parameter s on page 281.

171

Chapter 5 — Adding Operations

172

Extended Structure Parameters

In lgor Pro 5.04B07, an extended form of the structure parameter was added to allow you to
determine the size and structure type name of the structure passed to the X OP. The main reason
for adding this was to make it possible to create an operation that could accept any type of
structure and write its contents to afile. This requires that we know the size of the structure.

The extended form of thetemplate is:

DemoStructOp structure:{s,DemoStruct, 1}

Here s is the mnemonic name for a structure parameter, DemoStruct is the parameter’s structure
type name, and 1 signifies that you want thisto be an extended structure parameter.

When this form is used, the runtime parameter structure passed to the your operation’ s Execute
routine contains afield of type IgorStructinfo instead of a pointer to the actual parameter. The
IgorStructinfo structure contains fields that indicate the size of the structure parameter, the
structure type name and a pointer to the structure parameter itself.

Y ou should use the extended form if you want the added robustness provided by comparing the
size and type name of the structure parameter passed to you to the expected size and type name.
Another reason is to accept a structure parameter of any type, for example so that you can write it
to afile.

If the user supplies* asthe parameter for an extended form structure, the structSize field of the
IgorStructinfo structure will be zero and the structPtr field will be NULL. Y ou must test for this.

Chapter 5— Adding Operations

Extended Structure Parameter Example

The code to implement the extended form structure parameter is the same as shown above except
for the differences listed here.

The command template is slightly different:
ParseOperationTemplate/T/S=1/C=2 "DemoStructOp structure:{s:DemoStruct,1}"

The runtime parameter structure will have an IgorStructinfo field:

struct DemoStructOpRuntimeParams {
// Parameters for simple main group #0.
int sEncountered;
IgorStructInfo s; // Contains info about the structure parameter
int sParamsSet [1];

The Execute operation will use the fields of the IgorlnfoStruct:

static int
ExecuteDemoStructOp (DemoStructOpRuntimeParamsPtr p)
{

IgorStructInfo* isip;

DemoStruct* sp;

char buf [256];

char str[128];

int err = 0;

sp = NULL;
// Flag parameters.

if (p->sEncountered) ({

igip = &p->s; // Point to IgorStructInfo field.
if (isip->structSize > 0) { // 0 means user passed * for param.
if (isip-s>structSize = sizeof (DemoStruct)) {

err = OH BAD STRUCT SIZE;
goto done;

if (CmpStr (isip->structTypeName, "DemoStruct") != 0)) {
err = OH BAD STRUCT TYPE NAME;
goto done;

Sp = p->8p;

// The rest is the same as the previous example.

173

Chapter 5 — Adding Operations

174

In this case there is no point to testing the structTypeName field since we specified that only
structures of type DemoStruct could be passed to our operation. The structTypeName field may
be of usein cases where any type of structure can be passed as the parameter.

Runtime Output Variables

Some operations create numeric and/or string variables to pass information back to the calling
routine. For example, the CurveFit operation creates V_chisg and V_Pr, among others. When an
operation is called from a user function, if runtime lookup of globalsison (rtGlobals=1 or
rtGlobals=2), the operation creates local variables. If runtime lookup of globalsis off, it creates
global variables. When invoked from macros, it creates local variables. When invoked from the
command line, it creates global variables.

If you want to create runtime output numeric variables, you need to pass a semicolon-separated
list of variable names as the runtimeNumVarList parameter to RegisterOperation. Numeric
variable names must be legal standard Igor names and must begin with "V_". When your
operation executes, you must call SetOperationNumVar to store avalue in the variable.
SetOperationNumV ar takes care of determining if alocal or global variable is being set.

Creating a runtime output string variable is the same except that you use the runtimeStrVarList
parameter to RegisterOperation, string variable names must start with"S ", and you use
SetOperationStrVar to store avalue in the variable.

If you are updating afile loader XOP that calls SetFil el oaderOutputV ariables, you need to
change it to call SetOperationkilel oaderOutputV ariablesinstead. Y ou also need to specify that
your operation setsV_flag, S fileName, S_path and S_waveNames when you call
RegisterOperation. For example, the RegisterOperation function for Simplel oadWave contains
these statements:

runtimeNumVarList = "V_flag;";
runtimeStrVarList = "S path;S fileName;S waveNames;";

Operations should not use the value of variables asinputs. All inputs should be specified through
operation parameters. There is no provision for an operation to test the value of alocal variable at
runtime.

Chapter 5— Adding Operations

Starter Code Detalils

As explained on page 152, the starter code that Operation Handler generates for you includes the
following:

A comment showing the operation template.
A complete runtime parameter structure.
A skeleton ExecuteOperation function that you need to fill out.

A mostly complete RegisterOperation function which you need to call from your main
function.

When filling out the ExecuteOperation function, remember that you need to test string and wave
handle parameters to make sure they are not null. It is agood ideato examine a completed
ExecuteOperation function from a sample WaveMetrics X OP to see how NULL handles are
handled.

The RegisterOperation function is complete except that you may need to add runtime numeric or
string output variables as described on page 174.

For amore elaborate example which generates templates for multiple external operations, see
“VDT2 Templates.pxp”.

In the unlikely event that your command template exceeds 2048 characters, you will get an error
in Visual C++. Thisis because of aline length limitation in Visual C++. You will need to break
your command template up. See the NIGIPB2:N1488.c file for an example.

175

Chapter 5 — Adding Operations

176

Updating Starter Code

If you change your operation syntax, for example to add a new parameter, you must regenerate
your starter code and transfer the new code to your source file. If you have started to fill out your
ExecuteOperation function, you can not merely overwrite your old starter code. Y ou need to
preserve any additions you have made. Here is the recommended way to do this:

A DN P

Open your template experiment and add the new parameter to your function.
Run your function to regenerate the starter code.
In your development system, paste the new starter code into a new window.

Copy the template comment and the runtime parameter structure, which you presumably have
not modified, in their entirety from the new starter code and paste into your sourcefile,
overwriting the corresponding old code.

Copy the RegisterOperation from the new starter code and paste into your source file,
overwriting the old code, except that, if you have specified runtime output variables, you
must preserve those statements.

Find the section of the new ExecuteOperation function that deals with the new parameter and
add that section to your old ExecuteOperation function.

Chapter 5— Adding Operations

Supporting Old XOPs

For an old (pre-Operation Handler) XOP to be directly callable from an Igor user function, you
need to rewrite it using Operation Handler techniques. This means that your X OP will require
Igor Pro 5 or later. Also, using Operation Handler may require that you change the syntax of your
operation because it does not support all possible variations of syntax.

The recommended approach is to freeze your old XOP and create anew version of it using
Operation Handler. If your operation’s syntax hasto change, use a new name for the new version
(e.g., VDT and VDT2). Users of your XOP will then have the option of using the old or new
versions and you will be free to use Igor Pro 5 features.

When converting from the old method to Operation Handler, remove any cals like this from your
code:

SetXOPType (TRANSIENT) ;
XOPs that use Operation Handler must remain in memory once |loaded.

If you update an X OP from the old way to Operation Handler, you may get compile errorsin
functions that use the operation. For example, imagine that you convert this Igor Pro 4 function:

Function Test ()
Execute "XLLoadWave" // Creates V_flag in global context
NVAR V_flag
Print V_flag

End

to this Igor Pro 5 function:

Function Test ()

XLLoadWave // Call XLLoadWave directly in Igor Pro 5
NVAR V_flag // Compiler will complain about inconsistent type
Print V_flag

End

Thelgor Pro 5 compiler will complain. Thisis because XLLoadWave, when compiled, creates a
local variable named V_flag. Then the NVAR statement attempts to create a reference to a global
using the same name. The solution is to change the new function to:

Function Test ()
XLLoadWave // Call XLLoadWave directly in Igor Pro 5
Print V_flag

End

177

Chapter 5 — Adding Operations

178

Operation Handler Checklist

If your operation crashes or otherwise behaves unexpectedly, here are some things to double-
check:

Y ou have set the compilableOp bit in the XOPC resource for your operation. If you have
multiple operations, this bit must be set for each operation for which you want to use the
Operation Handler.

If your operation will be called directly, you do not have acall to
SetXOPType(TRANSIENT) in your code.

Y our runtime parameter structure must be consistent with your command template. Reread
the section entitled The Runtime Parameter Structure on page 159. See Creating Starter
Code on page 152 and Updating Starter Code on page 176.

Y ou must always check string and wave handles to make sure they are not null before using
them.

Y ou must not dispose string handles passed from Igor viayour runtime parameter list. Y ou
also must not access such handles after your ExecuteOperation returns. If you want to keep
the string data for later use, make a copy using HandToHand or GetCStringFromHandle.

String handles are not C strings. Use GetHandleSize to determine the number of charactersin
the string. Use the GetCStringFromHandle X OPSupport routine to move the charactersinto a
C string.

Y ou must never dispose or directly modify awave handle. Wave handles belong to Igor.

If you are updating afile loader XOP that calls SetFilel oaderOutputV ariables, you need to
changeit to call SetOperationFilel oaderOutputVariablesinstead. Y ou also need to specify
that your operation setsV_flag, S fileName, S _path and S waveNames when you call
RegisterOperation.

For other debugging ideas, see Chapter 12.

External FUNCtion EXAMPIESccccviiiieie ettt s 182
Adding an External FUNCLION t0 1G0Tccuviiiriiieieeeeeeese e 182
The XOPF 1100 RESOUICE.......cceiireeieeereeieteseesteseeseeeeessessessessessessesessessessesses 183

FUNCLION CalEQOMIES....ecuviivicieeiecie ettt te ettt nne e 185
Choose a Distinctive FUNCLION NaME........cccveceiieeereieeee e 186
Invoking an External FUNCLION ..o 186
External Function Parameters and RESUILS...........ccoovrireneneinene e 187
Parameter and RESUIT TYPES......cceieiueecieiesieese ettt sttt 188
Complex Parameters and RESUITS...........coeiveieieienine e 189
Strings Parameters and RESUILSccueceeieiecce e 190
SEUCIUrE ParamELErS........o ittt 194

Externa Function Structure Parameter Example..........ccoovvneneneieeienene. 196
Pass-By-Reference Parameters..........ccooveviiiiniicnceeeeesese e 198
Keep External FUNCLIONSIN MEMONYcceeeueiiieeeie et 201
FUNCTION Message Versus Direct Methods...........cooeveeninencnenicieieee 201
Error Checking and REPOIINGcoveveeiiiireie e 202

179

Chapter 6 — Adding Functions

180

Chapter 6 — Adding Functions

Overview

An XOP can add any number of external functions as well as any number of external operations
to Igor Pro.

An external function takes zero or more numeric, wave, string and structure parameters and
returns a numeric or string result. An external function is similar to a user-defined function except
that the external function isimplemented by C or C++ code in an XOP whereas the user-defined
function isimplemented by Igor code in Igor’ s procedure window.

There are two reasons for creating external functions rather than user-defined functions. First, in
some cases they may be significantly faster than user-defined functions. Second, you can do
things, like sample an 1/0O port, from an external function that you can’t do from a user-defined
function.

Whereas an external operation has a variable number of parameters, an external function has a
fixed number of parameters. Igor parses these parameters automatically and then passes them to
the external function in a structure.

External functions can be called anywhere Igor can call a built-in function, including from a user-
defined function, from a macro, from the command line, or in a curve-fitting operation.

To add afunction to Igor, you must create an XOPF resource to specify the name of the function,
the number and type of its parameters, and the type of its result. Then you need to write the code
that implements the function. The implementation accesses the parameters through the structure
that Igor passesto it. It returns two kinds of results. Oneis the function result, returned to the
calling user-defined function. The other is an error code, which Igor uses to determine when a
fatal error has occurred.

181

Chapter 6 — Adding Functions

182

External Function Examples

The XFUNC1 sample XOP, shipped with the XOP Toolkit, is avery simple XOP that adds three
trivial external functionsto Igor. The functions are XFUNC1Add(p1, p2), XFUNC1Div(pl, p2)
and XFUNC1ComplexConjugate(pl). Y ou can use this as a starting point for your externa
function XOP.

The XFUNC2 sample X OP implements two non-trivial external functions: logfit and plgndr.

logfit(wave, x) takes a single or double-precision wave containing three coefficients, a, b, and c,
and an X value and returns a+ b*log(c*x). Its use isillustrated by the XFUNC2 Demo.pxp
example experiment shipped in the XFUNC2 folder.

plgndr(l, m, X) takes three numbers and returns the value of the Legendre polynomial at x. The
use of plgndr isalso illustrated in the XFUNC2 Demo.pxp experiment. The Legendre polynomial
and its parameters, | and m, are described in Numerical Recipesin C.

The XFUNC3 sample XOP implements two trivial external string functions, xstrcatO(str1, str2)
and xstrcat1(strl, str2). Both simply return the concatenation of string expressions strl and str2.
The XFUNC3 Demo.pxp experiment contains tests that measure the speed of these functions.

Adding an External Function to Igor

When Igor Pro starts up, it examines each XOP filein the Igor Extensions folder or inits
subfolders. It looks for an XOPF 1100 resource. Thisresource, if it exists, defines the functions
that the XOP addsto Igor. Igor remembers the names of the functions added by the XOP.

If the XOP has an XOPF 1100 resource, Igor loads the XOP into memory at Igor’s startup time. It
calls the XOP s main function, telling the XOP to initialize itself. The XOP stays in memory from
launch time until Igor quits.

Chapter 6 — Adding Functions

The XOPF 1100 Resource

For each external function added by an XOP, Igor needs to know the name of the function, the
type of the function’ s return value and the number and type of parameters that the function
expects. These things are defined in the XOPF 1100 resource which is defined in the XOP's .r file
(Macintosh) or .rc file (Windows). For example, hereis the X OPF resource for XFUNC1.:

resource 'XOPF' (1100) { // Macintosh,
{

"XFUNC1lAdd",

F UTIL | F_EXTERNAL,

NT FP64,

{
NT FP64,
NT_FP64,

¥

"XFUNC1Div",

F UTIL | F_EXTERNAL,

NT FP64,

{
NT FP64,
NT_FP64,

b

"XFUNC1lComplexConjugate",
F _CMPLX | F_EXTERNAL,
NT FP64 | NT CMPLX,

NT _FP64 | NT_ CMPLX,
1,
}
}i

1100 XOPF
BEGIN
"XFUNC1Add\O",
F_UTIL | F_EXTERNAL,
NT FP64,
NT FP64,
NT FP64,
0,

// Windows,

// 0 terminates

"XFUNC1Div\0",
F_UTIL | F_EXTERNAL,
NT FP64,

NT FP64,

NT FP64,

0, // 0 terminates

"XFUNClComplexConjugate\0",
F_CMPLX | F_EXTERNAL,
NT FP64 | NT CMPLX,

NT_FP64 | NT_CMPLX,

0, // 0 terminates

// 0 terminates
END

in XFUNCl.r.

!/
//
//

/7

Function name
Function category
Return type is double precision

Parameter types

Function name
Function category
Return type is double precision

!/
!/
//

/7

Parameter types

Function name
Function category
Return type is double complex

/!
!/
!/

!/

Double complex parameter

in XFUNC1lWinCustom.rc.

!/
//
/!
/!

Function name

Function category

Return type is double precision
Parameter types

list of parameter types.

// Function name

// Function category

// Return type is double precision
// Parameter types

list of parameter types.

// Function name
// Function category
// Return type is double complex
// Double complex parameter
list of parameter types.

the resource.

183

Chapter 6 — Adding Functions

Here are the symbols available to specify the type of the external function’s parameters and its

return value.
Symbol Decimal Where Used Description
NT_FP64 4 Return type, Double-precision floating
parameter type. point.
NT_FP64 | NT_CMPLX 5 Return type, Complex.
parameter type.
HSTRING_TYPE 8192 Return type, String handle.
parameter type.
WAVE_TYPE 16384 Parameter type only. Wave handle.
FV_REF TYPE 4096 Parameter type only. Indicates pass-by-reference
parameter. Supported by Igor
Pro 5 or later.
FV_STRUCT _TYPE 1024 Parameter type only. Structure. Always use with

FV_REF TYPE.

184

Note that other Igor number types, such asNT_FP32 and NT_132, are not allowed. A parameter
type can be WAV E_TYPE but not areturn type. If aparameter is awave, the XOPF resource
does not specify what kind of wave it is (floating point numeric, integer numeric, text). Igor will
allow the user to pass any kind of wave to your external function so you must check the wave
type at run time. See the logfit routine in XFUNC2Routines.c for an example.

There is one case in which you do need to use a numeric type in conjunction with awave type -
when you are creating a curve fitting function. Y ou must specify the first parameter type as
WAVE_TYPE | NT_FP64. Thisis explained on page 188 in the section Parameter and Result

Types.

The FV_REF_TYPE flag is used in conjunction with one of the other parameter types to signify
that a parameter is passed by reference. It is used with numeric or string parameters and has no
meaning for wave parameters. Pass-by-reference is described on page 198.

The ahility to pass a structure to an external function was added in Igor Pro 5.03.
FV_STRUCT_TYPE must always be ORed with FV_REF_TYPE.

Chapter 6 — Adding Functions

Function Categories

The function category specifier is some combination of the symbols shown in the following table.
The function category controls when the function will appear in Igor’s Help Browser. For
example, specifying the function’s category asF_EXTERNAL | F_SPEC would make the
function appear when All, External or Specia are selected in the Functions popup menu in the

Command Help tab of the browser.

Symbol Bit Value Function Help Dialog Category
F TRIG 1 Trig

F EXP 2 Exponential

F_SPEC 4 Specid

F CMPLX 8 Complex

F TIMEDATE 16 Time and Date
F_ROUND 32 Rounding

F CONV 64 Conversion

F WAVE 128 About Waves

F _UTIL 256 Programming & Utility
F NUMB 512 Numbers
F_ANLYZWAVES 1024 Wave Analysis

F 10 2048 1/0

F_WINDOWS 4096 Windows

F_ EXTERNAL 8192 Externa

F STR 32768 String

Y ou must always set the F_EXTERNAL bit for al externa functions.

185

Chapter 6 — Adding Functions

186

Choose a Distinctive Function Name

NOTE: Thename of an external function must not conflict with the names of present or future
built-in operations or functions or with the names of present or future external
operations or functions. Don’t use a vague or general name. If you choose a name that
clearly describes the function’s purpose, chances are that it will not conflict.

The name that you choose for your function becomes unavailable for use as awave name,
window name or global variable name. For example, if you name your function Test then you can
not use the name Test for any Igor object. If you have existing experiments that use Test, they
will bein conflict with your function. Therefore, pick a name that is unlikely to be useful for any
other purpose. Thisis especially important if you plan to share your XOP with other Igor users
since they are probably not prepared to deal with errors when they open existing experiments.

Invoking an External Function

Y ou can invoke an external function from Igor’s command line, from amacro or from a user-
defined function just as you would invoke a built-in function or user-defined function. For
example, the XFUNC1Div function, defined by the X OPF 1100 resource of the XFUNC1 X OP,
can beinvoked from Igor’s command line using the following commands:

XFUNC1Div (3, 4)

Print XFUNC1Div(3,4)

KO = XFUNC1Div (K1, K2)

waveO = XFUNC1Div (wavel, wave2)

The last example is awave assignment statement. Y ou may think that the waves wavel and
wave2 are passed to the XFUNC1Div function. Thisis not the case. Instead, Igor calls
XFUNC1Div one time for each point in waveQ, passing a single value from wavel and another
single value from wave2 each time. This is because the parameter types for XFUNC1Div are
NT_FP64. If the parameter types were WAVE_TYPE, Igor would pass waves. The logfit
function implemented in XFUNC2 illustrates this.

Chapter 6 — Adding Functions

External Function Parameters and Results

The XFUNC1Div routine in XFUNCL.c illustrates how you access the function’s parameters and
how you return the result:

#include "XOPStructureAlignmentTwoByte.h"

struct XFUNC1DivParams {
double p2; // p2 is the second parameter to XFUNC1Div.
double pl; // pl is the first parameter to XFUNC1Div.
double result;

}i

typedef struct XFUNC1lDivParams XFUNClDivParams;
#include "XOPStructureAlignmentReset.h"

static int
XFUNC1Div (XFUNC1DivParams* p) // p 1s a pointer passed from Igor to XFUNC.

{

p->result = p->pl / p->p2; // XFUNC result.
return 0; // XFUNC error code

}

The #include statements insure that Igor and the X OP agree on the alignment of the parameter
structure. See Structure Alignment on page 279 for details.

The parameter passed from Igor to XFUNCI1Div isp. p is apointer to a structure. The structure
contains the parameters that the external function isto operate on. Parameters are passed by Igor
to the external function in reverse order. The first element in the structure is the last parameter to
the XFUNCI1Div function. The last element in the structure is where the external function stores
itsresult. Thisresult field is the value that Igor returns to the calling function.

If an external function has a wave parameter, the corresponding field in the structure must be of
type waveHnd!. If an external function has a string parameter or result, the corresponding field
must be of type Handle. If an external function has a structure parameter, the corresponding field
must be of type pointer to structure. All other parameters are numbers and the corresponding
fields must be declared double.

In this example, the parameters are passed by value. Numeric and string parameters can also be
passed by reference, as described on page 198. In that case, the structure fields would be defined
as double* or Handle*.

Note that the function returns an error code which is zero if no error occurred or a built-in Igor
error code (defined in IgorXOP.h) or an XOP-defined error code (defined in the XOP's .h file
with corresponding error strings in the STR# 1100 resource). Do not confuse this error code with
the result returned to the calling function viathe result field in the structure. In the case of

187

Chapter 6 — Adding Functions

188

XFUNCI1Div, there is nothing to go wrong so the error code is always zero. If you return a non-
zero error code, Igor will abort procedure execution and display a dialog indicating the nature of
the error. Y ou should do this only in the case of fatal errors.

Parameter and Result Types

The XFUNC2 X OP adds an external function, logfit, that takes a wave and a numeric value as its
parameters and returns a numeric value. The XOPF 1100 resource for this XOP looks like this:

resource 'XOPF' (1100) { // Macintosh, in XFUNC2.r.

{

// v = a + b*log(c*x)

"logfit™", // Function name
F _EXP | F_EXTERNAL, // Function category
NT FPé64, // Return value type
WAVE_TYPE | NT FP64, // Wave
NT FP64, // Double-precision x

b

// Other function definitions here.

}
}

1100 XOPF // Windows, in XFUNC2WinCustom.rc.
BEGIN
// v = a + b*¥log(c*x)
"logfit\o", // Function name
F EXP | F EXTERNAL, // Function category
NT FPé64, // Return value type
WAVE TYPE | NT FPé64, // Wave
NT FP64, // Double precision x
0, // 0 terminates list of parameter types.

// Other function definitions here.

0, // NOTE: 0 required to terminate the resource.
END

This saysthat the logfit function returns a double-precision number (NT_FP64). WAVE TYPE |
NT_FP64 indicates that the first parameter to logfit is awave. The second parameter is a double-
precision number.

The logfit function is written to handle single-precision or double-precision wave parameters. It
checks the type of the wave parameter and returns an error if the type is not one of these.

Chapter 6 — Adding Functions

Normally, you can use just WAVE_TY PE for wave function parameters. However, if the
function is a curve-fitting function, asin this example, you must use WAVE_TYPE | NT_FP64.
The use of NT_FP64 here is needed to satisfy the FuncFit operation. However, it does not mean
that Igor will pass only double-precision waves to the function. Y ou must still check the wave
type in the function.

NOTE: Igor can passaNULL wave handle to your function. This happens during the execution
of a user-defined function when awave that is assumed to exist does not exist. Y our
function must check for this as shown in the logfit example.

Complex Parameters and Results

XFUNC1 adds a function that returns the complex conjugate of a complex parameter. The XOPF
1100 resource for acomplex function looks like this:

// Macintosh, in XFUNC1l.r.
resource 'XOPF' (1100) {

{

"XFUNC1lComplexConjugate", // Function name

F CMPLX | F_EXTERNAL, // Function category

NT FP64 | NT CMPLX, // Return value type = DPC
NT FP64 | NT CMPLX, // DPC parameter

b
}
}i

// Windows, in XFUNC1WinCustom.rc.

1100 XOPF
BEGIN
"XFUNC1lComplexConjugate\0o", // Function name
F CMPLX | F_EXTERNAL, // Function category
NT FP64 | NT CMPLX, // Return value type = DPC
NT FP64 | NT CMPLX, // DPC parameter
0, // 0 terminates list of parameter types.
0, // 0 terminates the resource.
END

Thefirst useof NT_FP64 | NT_CMPLX specifiesthat the return value is double-precision,
complex. The second use of NT_FP64 | NT_CMPLX specifies that the parameter is double-
precision, complex.

See XFUNC1ComplexConjugate in XFUNC1.c for the code that implements a complex function.

189

190

Chapter 6 — Adding Functions

Strings Parameters and Results

The XFUNC3 XOP adds an external function that takes two string parameters and returns a string

result. The XOPF 1100 resource for this XOP looks like this:

// Macintosh, in XFUNC3.r.

resource 'XOPF' (1100) {
{
// strl = xstrcatO(str2, str3)
"xstrcato", //
F STR | F_EXTERNAL, //
HSTRING TYPE, //
{
HSTRING TYPE, //
HSTRING TYPE, //
I
// strl = xstrcatl(str2, str3)
"xstrcatl", //
F_STR | F_EXTERNAL, //
HSTRING TYPE, //
HSTRING TYPE, //
HSTRING TYPE, //

b
}
}i

// Windows, in XFUNC3WinCustom.rc.

1100 XOPF
BEGIN
// strl = xstrcatO(str2, str3)
"xstrcato\o", //
F STR | F_EXTERNAL, //
HSTRING TYPE, //
HSTRING TYPE, //
HSTRING TYPE, //

OI
// strl = xstrcatl(str2, str3)
"xstrcatl\o", //
F STR | F _EXTERNAL, //
HSTRING TYPE, //
HSTRING TYPE, //
HSTRING TYPE, //

0,

END

Function name
Function category (string)
Return value type is string handle.

First parameter is string handle.
Second parameter is string handle.

Function name
Function category (string)
Return value type is string handle.

First parameter is string handle.
Second parameter is string handle.

Function name

Function category (string)

Return value type is string handle.
First parameter is string handle.
Second parameter is string handle.

// 0 terminates list of parameter types.

Function name

Function category (string)

Return value type is string handle.
First parameter is string handle.
Second parameter is string handle.

// 0 terminates list of parameter types.

// 0 terminates the resource.

Chapter 6 — Adding Functions

This resource defines two string functions that do exactly the same thing. The function
declarations are identical except for the function name. The reason for having identical functions
isto demonstrate two methods by which Igor can call an external function. These methods are
explained on page 201 under FUNCTION M essage Versus Direct Methods.

The return value type of HSTRING_TY PE says that the function returns a string. The
HSTRING_TY PEsindicate both parameters are strings.

This function isinvoked asfollows:

String aString
aString = xstrcatO("Hello", " out there")

191

Chapter 6 — Adding Functions

xstrcat is defined as follows:

static int
xstrcat (// strl = xstrcat(str2, str3)
struct
Handle str3;
Handle str2;
Handle result;

}* p)
{
Handle stril; // output handle
long len2, len3;
int err=0;
strl = NULL; // If error occurs, result is NULL.
if (p-»>str2 == NULL) { // Error -- input string does not exist.
err = NO INPUT STRING;
goto done;
}
if (p->str3 == NULL) { // Error —-- input string does not exist.
err = NO INPUT STRING;
goto done;
}
len2 = GetHandleSize (p->str2); // length of string 2
len3 = GetHandleSize (p->str3); // length of string 3
strl = NewHandle(len2 + len3); // Get output handle.
if (strl == NULL) {
err = NOMEM;
goto done; // out of memory
!
memcpy (*strl, *p->str2, len2);
memcpy (*strl+len2, *p->str3, len3);
done:
if (p-»str2 != NULL)
DisposeHandle (p->str2); // Get rid of input parameters.
if (p->str3 != NULL)
DisposeHandle (p->str3); // Get rid of input parameters.
p->result = stril;
return err;
}

The error code NO_INPUT_STRING is defined by the XOP whereas NOMEM s a standard |gor
error code (defined in IgorXOP.h).

192

Chapter 6 — Adding Functions

Stringsin Igor are stored in plain Macintosh-style handles, even when running on Windows. The
handle contains the string’ s text, with neither a count byte nor atrailing null byte. Use
GetHandleSize to find the number of charactersin the string. To use C string functions on this
text you need to copy it to alocal buffer and null-terminate (using GetCStringFromHandle) it or
add a null terminator to the handle and lock the handle. If you pass the handle back to Igor, you
must remove the null terminator and unlock the handle.

An external string function returns a handle as its result. It can return NULL in the event of an
error.

Unlike awave handle, a handle passed as a string parameter to an external function belongsto
that function. The external function must dispose of the handle. Alternately, the external function
can return the handle as the function result after possibly modifying its contents.

NOTE: Asfor wave handles, it is possible for astring parameter to be passed as NULL because
the string does not exist during the execution of a compiled user-defined function. The
external function must check for this.

xstrcat checks its parameters. If either isNULL, it returns NULL as aresult. Otherwise, it creates
anew handle and concatenates its input parameters into the new handle. This new handleis
stored as the result and the input handles are disposed. The result handle belongs to Igor. The
external function must not dispose of it or accessit in any way onceit returnsto lgor.

193

Chapter 6 — Adding Functions

194

Structure Parameters

Igor Pro 5.03 added the ability to pass a pointer to a structure as a parameter to an external
function. Thisis atechnique for advanced programmers.

If you use this feature, your XOP will require Igor Pro 5.03 or later. Y ou should put atest in your
main function to make sure that you are running with a recent enough version. See Checking
Igor’sVersion on page 140 for details.

Structure parameters are passed as pointers to structures. These pointers always belong to Igor.
Y ou must never dispose or resize a structure pointer but you may read and writeits fields.

Aninstance of an Igor structure can be created only in a user-defined function and exists only
while that function is running. Therefore, external functions that have structure parameters can be
called only from user-defined functions, not from the command line or from macros.

The pointer for a structure parameter can be NULL. Thiswould happen if the user supplies* as
the parameter or in the event of an internal error in Igor. Therefore you must awaystest a
structure parameter to make sureit isnon-NULL before using it.

If you receive aNULL structure pointer as a parameter and the structure is required for the
operation, return an EXPECTED_STRUCT error code. Otherwise, interpret this to mean that the
user wants default behavior.

Unlike the case of externa operations, the Igor compiler has no way to know what type of
structure your external function expects. Therefore, Igor will alow any type of structure to be
passed to an external function. When writing Igor procedures that call the external function, you
must be careful to pass the right kind of structure.

Y ou must make sure that the definition of the structure in Igor matches the definition in the X OP.
Otherwise acrashislikely to occur.

Chapter 6 — Adding Functions

Here is the XOPF resource declaration for an external function that takes one parameter whichis
apointer to a structure;

// Macintosh
resource 'XOPF' (1100) {

{

// result = XtestFlStruct (struct FlStruct* s)

"XTestF1lStruct", // Function name
F_EXTERNAL, // Function category
NT FPé64, // Return value type

{
b

FV_STRUCT TYPE | FV_REF TYPE, // Pointer to FlStruct.

!
}i
// Windows
1100 XOPF
BEGIN
// result = XTestFlStruct (struct FlStruct* s)
"XTestF1Struct\0", // Function name
F_EXTERNAL, // Function category
NT FPé64, // Return value type
FV_STRUCT TYPE | FV_REF TYPE, // Pointer to FlStruct
0, // 0 terminates parameters.
0, // 0 terminates functions.
END

Theuseof FV_STRUCT_TYPE | FV_REF_TY PE says that the function takes a pointer to a
structure as a parameter.

195

Chapter 6 — Adding Functions

196

External Function Structure Parameter Example
Here isIgor procedure code which invokes this external function.

Constant kFlStructVersion = 1000 // 1000 means 1.000

Structure FlStruct
uint32 version
double num
String strH
Wave waveH
double out

EndStructure

Function Test ()
STRUCT FlStruct s

s.version = kFlStructVersion
s.num = 4321

s.strH = "This is a test."
Wave s.waveH = jack

s.out = 0

Variable result = XTestFlStruct (s)
End

Hereis C code that implements the external function:

#include "XOPStructureAlignmentTwoByte.h"

#define kFlStructureVersion 1000
struct FlStruct

unsigned long version;

double num;

Handle strH;

waveHndl waveH;

double out;
}i

typedef struct FlStruct FlStruct;

struct FlParam ({
FlStruct* sp;
double result;

typedef struct FlParam FlParam;

#include "XOPStructureAlignmentReset.

hll

//

//
//
//

//
//

// Structure of parameter to XTestFlStruct.
// Structure version.

Set structure alignment.

1000 means 1.000.
Structure of parameter.
Structure version.

Parameter structure.
This param is pointer to

struct.

Chapter 6 — Adding Functions

int
XTestFlStruct (struct FlParam* p)

{

struct FlStruct* sp;

char buffer[256];

char str[128];

char nameOfWave [MAX OBJ NAME+1];
int err=0;

Sp = p->sp;
if (sp == NULL) ({
err = EXPECT_ STRUCT;
goto done;

}

if (sp->version != kFlStructureVersion)
err = INCOMPATIBLE STRUCT VERSION;
goto done;

}

sp->out = 1234;

if (sp-»strH == NULL) {
err = USING NULL STRVAR; // Error: input string does not exist
goto done;

}

if (sp-s>waveH == NULL) {
err = NOWAV; // Error: expected wave
goto done;

}

if (err = GetCStringFromHandle (sp->strH, str, sizeof (str)-1))
goto done; // String too long.

WaveName (sp->waveH, nameOfWave) ;

sprintf (buffer, "num=%g, str=\"%s\", wave='%s'"CR_STR,
Sp->num, sp->str, nameOfWave) ;
XOPNotice (buffer) ;

done:
p->result = err;
return err;

}

There are two structures involved in this example: the F1Param structure and the F1Struct
structure. F1Param defines the format of the parameter structure — the structure through which

197

Chapter 6 — Adding Functions

198

Igor passes any and all parameters to the external function. F1Struct defines the format of the one
structure parameter passed to this function. p is a pointer to a parameter structure. sp is a pointer
to aparticular parameter which is a pointer to an Igor structure whose format is defined by
F1Struct.

The Igor procedure code must declare an F1Struct structure and the C code must declare a
matching C structure. The use of the version field is a convention for preventing a crash if the
procedure version of the structure and the C version get out-of-sync.

The Igor code declares the F1Struct structure. It then creates and initializes an instance of it,
named s. It then passes s (actually a pointer to s) to the X TestF1Struct external function.

The XTestF1Struct external function first checks that a valid pointer has been passed. It then
checks that the version of the structure is compatible before accessing its fields. It can read, write
or read and write any of thefields.

An advanced programmer may want to use a more flexible versioning scheme by allocating
reserved fields in the structure and then using the version field to handle whatever version of the
structure was passed from the Igor procedure. If possible you should simplify your life by using
the simplified versioning technique shown above. However, if you decide to save structure data to
disk and later read it back, you will have to deal with more complex versioning issues, aswell as
cross-platform byte-order issues. Y ou will also have to deal with versioning issuesif your XOP
will be used by many people and you can not force them to update their Igor procedure code
when you update your X OP.

For further important details see Using I gor Structures as Parameter s on page 281.

Pass-By-Reference Parameters

External functions can have pass-by-reference parameters. Only numeric and string parameters
can be pass-by-reference.

The use of pass-by-reference XFUNC parameters requires Igor Pro 5 or later. If your function
must run with Igor Pro 4 then you must not define it to use pass-by-reference.

Normally function parameters are pass-by-value. This means that the called function (the external
function in this case) can not modify the value of the parameter as seen by the calling user-
defined function.

With a pass-by-reference parameter, the called function can modify the parameter's value and the
calling user-defined function will receive the modified value on return. Pass-by-reference allows
afunction to return multiple values to the calling function, in addition to the function result.

Chapter 6 — Adding Functions

There are three differences in the implementation of a pass-by-reference parameter compared to a
normal pass-by-value parameter.

First, in the XOPF resource, when declaring the parameter type, you use the FV_REF_TYPE
flag. Here is an example of an X OPF that declares a function with three pass-by-reference
parameters:

resource 'XOPF' (1100) {

{

// number = ExampleFunc (number, complexNumber, str)

"ExampleFunc", // Function name

F UTIL | F_EXTERNAL, // Function category
NT FP64, // Return value type
{ // Parameter types

NT FP64 | FV_REF TYPE,
NT FP64 | NT CMPLX | FV_REF TYPE,
HSTRING TYPE | FV_REF_TYPE,
b
}
Vi

Second, in the parameter structure passed to the XFUNC, the fields corresponding to pass-by-
reference parameters must be pointers to doubles or pointers to Handles. For example:

// All structures passed between Igor and XOP are two-byte aligned.
#include "XOPStructureAlignmentTwoByte.h"

struct ExampleParams { // Fields are in reverse order.
Handle* strHPtr; // Parameter is pass-by-reference.
double* complexNumberPtr; // Parameter is pass-by-reference.
double* scalarNumberPtr; // Parameter is pass-by-reference.
double result; // Function result field.

typedef struct ExampleParams ExampleParams;
typedef ExampleParams* ExampleParamsPtr;

// Reset structure alignment to default.
#include "XOPStructureAlignmentReset.h"

The third difference has to do with string handles. As with pass-by-value, when your XFUNC
receives a pass-by-reference string parameter, you own the handle pointed to by the Handle*
field, strHPtr in this case. The differenceis that you must also return a handle viathisfield and
Igor owns the handle that you return. Often it is convenient to reuse the input handle as the output
handle, as the example code below shows, in which case ownership of the handle passes from the

199

200

Chapter 6 — Adding Functions

XOP back to Igor and you must not dispose it. If you return a different handle then you must
dispose the input handle.

As with pass-by-value, strings passed by reference can be NULL and you must check for this.

This example shows how to access and modify pass-by-reference parameters:
int

ExampleFunc (ExampleParamsPtr p)

{

char str[256];
int err;

err = 0;

if (*p-s>scalarNumberPtr != 0)
char buffer([512];

// GetCStringFromHandle tolerates NULL handles.
GetCStringFromHandle (*p->strHPtr, str, sizeof (str)-1);
sprintf (buffer, "ExampleFunc received: %g, (%g,%g), %s"CR_STR,
*p->scalarNumberPtr,
p->complexNumberPtr [0] , p->complexNumberPtr[1],
str) ;
XOPNotice (buffer) ;

}

*p->scalarNumberPtr *= 2;
p->complexNumberPtr [0] *=
p->complexNumberPtr [1] *

// *p->strHPtr will be NULL if caller passes uninitialized string.
if (*p->strHPtr == NULL)
*p->strHPtr = NewHandle (0L) ;

if (*p->strHPtr != NULL) {
strcpy (str, "Output from ExampleFunc") ;
err = PutCStringInHandle (str, *p->strHPtr);

}

/* Do not dispose *p->strHPtr. Since it is a pass-by-reference parameter,

the calling function retains ownership of this handle.

*/
p->result = 0;

return err;

Chapter 6 — Adding Functions

Keep External Functions in Memory

All XOPs with external functions must remain resident all of the time. Y ou can satisfy the by just
not calling the SetXOPType(TRANSIENT) X OPSupport routine.

FUNCTION Message Versus Direct Methods

When an external function isinvoked, Igor calls code in the XOP that defined the function. There
are two methods for calling the code:

* The FUNCTION message method.
» Thedirect-call method.

Nearly al external functions should use the direct method which is faster than the FUNCTION
message method. The only except isif your external function must run on Macintosh with Igor
Pro 4 and if it directly or indirectly calls GetResource. In that case, you should use the
FUNCTION message method. Otherwise your calls to GetResource might fail.

The FUNCTION message method of calling the external function uses the same techniques for
communication between Igor and the XOP as all other XOP Toolkit messages. Igor calls your
XOP' s XOPEntry function, passing it the FUNCTION message. This message has two
arguments. The first argument is an index number starting from zero that identifies which of your
external functionsis being invoked. For the XFUNC1 XOP, if the XFUNC1Add function is being
invoked, theindex is 0. If the XFUNC1Div function is being invoked, the index is 1. The second
argument is a pointer to a structure containing the parameters to the function and a place to store
the function result as described above.

The DoFunction routine in XFUNCL1.c decides which of the external functionsis being invoked.
It then calls that function, passing it the necessary pointer. It acts as a dispatcher.

When calling a direct function, Igor does not send a FUNCTION message to your X OPEnNtry
routine but instead calls your function code directly, passing to it a pointer to the structure
containing the parameters and a place to store the function result.

Hereis how Igor decides which method to use when calling an external function. When Igor
starts up it examines each XOP' s XOPF 1100 resource to seeif it adds an external function or
functions. If the XOP does add functions, Igor loads the XOP into memory and sends it the INIT
message (i.e., calls the XOP's main function). Then it sends the XOP the FUNCADDRS message
once for each external function that the XOP adds. The FUNCADDRS message has one
argument: the index number for an external function added by the XOP. If the XOP returns
NULL in response to this message then Igor will call that external function using the FUNCTION

201

Chapter 6 — Adding Functions

202

message method. If the XOP returns other than NULL, thisresult is taken as the address of the
routine in the XOP for Igor to call directly when the external function is invoked.

XFUNC3iillustrates both ways of registering afunction. In response to the FUNCADDRESS
message from Igor, it registers the xstrcatO function as direct by returning an address, and
registers the xstrcat1 function as message-based by returning NULL .

Error Checking and Reporting

The logfit function in XFUNC2 illustrates error checking and reporting. The function is designed
for use as a curve-fitting function but it also can be invoked from an Igor procedure as follows:

KO = logfit (waveO, Xx);
The value that will be stored in KO is returned via the result field of the structure that |gor passes

to the logfit function. In addition to this result, the function has a return value which Igor looks at
to seeif the function encountered a serious problem.

Chapter 6 — Adding Functions

logfit is defined as follows:

#include "XOPStructureAlignmentTwoByte.h"

struct LogFitParams {
double x; // Independent variable.
waveHndl waveHandle; // Coefficient wave (contains a, b, c coefs).
double result;

}i

typedef struct LogFitParams LogFitParams;

typedef struct LogFitParams *LogFitParamsPtr;

#include "XOPStructureAlignmentReset.h"

int

logfit (LogFitParamsPtr p) // v = a + b*log(c*x)

{
double* dPtr; // Pointer to double-precision wave data
float* fPtr; // Pointer to single-precision wave data
double a, b, c;

// Check that wave handle is valid

if (p->waveHandle == NULL)
SetNaN64 (&p->result) ; // Return NaN if wave not valid.
return NON_EXISTENT WAVE;

}

// Check coefficient wave’s numeric type.
switch (WaveType (p->waveHandle)) {
case NT FP32:
fPtr = WaveData (p->waveHandle) ;

a = fPtr([O0];
b = fPtr[1];
c = fPtr[2];
break;

case NT FP64:
dPtr = WaveData (p->waveHandle) ;
a = dPtr([O0];
b dPtr([1];
c = dPtr[2];
break;
default: // Can’t handle this data type.
p->result = nan(255) ; // Return NaN.
return REQUIRES SP OR DP WAVE;

}
p->result = a + b*1logl0 (c*p->x) ;

return 0O;

203

Chapter 6 — Adding Functions

204

The LogFitParams structure is defined in XFUNC2.h.

The error codes NON_EXISTENT_WAVE and REQUIRES SP_ OR_DP WAVE are defined in
XFUNC2.h with corresponding strings in XFUNC2's STR# 1100 resource.

Notice that logfit starts off by making sure that the wave parameter isnot NULL. Thisis
necessary because the external function can be called from an Igor user-defined function. User-
defined functions are compiled by Igor and can refer to awave that doesn’t exist at compile time.
If, when the compiled function is executed, the wave still does not exist, it will be passed to logfit
asaNULL handle.

When Igor passes awave to an external function, it does not do type conversion. The wave passed
to logfit could be single precision, double precision or integer. It could also be complex. It could
even be atext wave. Logfit returns NaN if the wave passed to it is other than single or double
precision, real.

Returning a non-zero value from an external function causes Igor to abort procedure execution
and display an error alert. Therefore, you should only do thisif the error isfatal - that is, if itis
likely to make any further processing meaningless. If we did not want passing the wrong type of
wave to logfit to be afatal error, we would set p->result to NaN, as shown above, and then return
zero to Igor, instead of NON_EXISTENT_WAVE or REQUIRES SP_OR_DP WAVE.

Accessing Igor Data

OVEIVIBIW ..ttt sttt s e et be s e e tesaeebesbeensenbeereeneene 207
WVBVES ...ttt nr e nne e 207
Routines for ACCESSING WAVEScceieiririnieriesieee s 207
Getting aHandleto aWave ..o 207

Getting Wave Properti€S.......ccoviiieevi e 208

Setting Wave Properties..........coeveeeirenenieneeeeesese s 208

Locking and Unlocking Wave Handles...........ccooovveeeeniecenenceee, 209

Reading Wave Dataccccveeieevie ettt 209

WrtINg Wave Data.......cc.covviieeiececece e 209
L= 10 10 = S 210

A e YL D= = 1Y 0= T 211
Accessing Numeric Wave Data..........cocevvvveece e 212
The Point ACCESS MELNOdccoovviieiceeee e 212

The Temporary Storage Access Method..........cooovvveiiiiieiiieicee 213

The Direct ACCeSS MEthod..........ccccvririniiineeeese s 214

Speed COMPAITSONS........covireeeeeeeeieeie et sn e ee e 215
Organization of Numeric Datain Memoryccccceecevveeenesceeeneene 216
Accessing Text Wave Dala.........cccceeveeieeciineie e e 217
Wave Scaling and UNItS.........ccoiiiieieieec e 218
Numeric and String Variables ... 220
Routines for Accessing Variables........cccceeveeviervce e, 221
Creating Variables........ccoovceeiiiecese e 221

Getting Variable CONtENtS..........ccoieererinereseeeeeeees e 221

Setting Variable CONtENtScoveveiririnereseeeeeses e 222
EXAMPIE . e 223
Dealing With Data FOITErS..........coiiiieeeirese e 224
Routines for Accessing Data FOlders.........c.coeveveeeencene e 224
Getting aHandleto aData Folder ... 225

205

Chapter 7 — Accessing Igor Data

206

Creating and Killing aData Folderccoooeeeevrieeieneeeeene e
Accessing Objectsin aDataFoldercccoooveveveveiecc e

Data Folder Conventions

Chapter 7 — Accessing Igor Data

Overview

This chapter explains how to access Igor data— waves, numeric variables, string variables and the
data folders that contain them.

Dealing with waves, string variables, and datafolders involves the use of Macintosh-style
handles, whether your XOP is running on Macintosh or Windows. Y ou need to understand
Macintosh-style handlesin order to access and manipulate Igor data. See Data Sharing on page
139 and M acintosh M emory Management on page 261 for details.

Waves

A waveis stored in ablock of memory in the heap, referenced by a handle. The first hundred or
so bytes of the block contains a structure that describes the wave. After that comes the main wave
data followed by optional wave data such as the wave note. Y ou will often need to get awave
handle from Igor or pass awave handle to Igor to identify a particular wave to operate on.

Y ou never need to and never should attempt to deal with the wave structure directly. Instead, you
should use the X OPSupport routines, provided in XOPWaveAccess.c and listed in Chapter 13, to
get and set wave data and properties.

Routines for Accessing Waves

The XOPSupport routines for dealing with waves are described in detail in Chapter 13. Hereisa
summary of the commonly-used routines.

Getting a Handle to a Wave

Routine Description

MakeWave Makes 1D waves.

MDMakeWave Makes waves of dimension 1 through 4.

FetchWave Returns a handle to awave in the current data folder given its name.

GetDataFolderObject Returns a handle to a wave given its name and data folder.

In addition, you can create external functions and external operations that receive wave handles
from Igor as a parameter.

207

Chapter 7 — Accessing Igor Data

Getting Wave Properties

Routine Description

WaveName Returns wave name given ahandle.
WaveType Returns data type.

WavePoints Returns number of elementsin all dimensions.

MDGetWaveDimensions Returns number of e ementsin each dimension.

WaveScaling Gets scaling for the row dimension only.
MDGetWaveScaling Gets scaling for the specified dimension.
WaveUnits Gets row dimension units, data units.
MDGetWaveUnits Gets units for the specified dimension or data units.

MDGetDimensionL abel Gets dimension label for specified dimension index.
GetWaveDimensionLabels Gets al dimension labels for entire wave.
WaveNote Gets the wave note.

Wavel ock Returns the lock state of the wave.

Setting Wave Properties

Routine Description

SetWaveScaling Sets scaling for the row dimension only.
MDSetWaveScaling Sets wave scaling for the specified dimension.
SetWaveUnits Sets row dimension units, data units.
MDSetWaveUnits Sets units for the specified dimension or data units.

MDSetDimensionL abel Sets dimension label for specified dimension index.
SetWaveDimensionLabels Sets all dimension labels for entire wave.
SetWaveNote Sets the wave note.

SetWavel ock Setsthe lock state of the wave.

208

Chapter 7 — Accessing Igor Data

Locking and Unlocking Wave Handles

Routine Description

Movel ockHandle L ocks wave handle and returns previous state. Y ou must restore the
locked/unlocked state using HSetState.

GetWavesinfo L ocks multiple wave handles and returns pointers to their data.
Y ou must restore the locked/unlocked state using SetWaveStates.

SetWavesStates Restores |ocked/unlocked state. Used with GetWavesl nfo.

Reading Wave Data

Routine Description

WaveData Returns pointer to the start of wave's data.

MDA ccessNumericWaveData Returns the offset to the wave data.
MDGetNumericWavePointVaue Returns the value of a single element of wave.

MDGetDPDataFromNumericWave Returns all wave datain a double-precision buffer.
MDGetTextWavePointValue Getsthe value of asingle element of text wave.

GetTextWaveData Gets the entire contents of a text wave.

Writing Wave Data

Routine Description

WaveData Returns pointer to the start of wave's data.
MDA ccessNumericWaveData Returns the offset to wave data.

M D SetNumericWavePointValue Sets the value of a single element of wave.

MDStoreDPDatal n(NumericWave Sets all wave data from a double-precision buffer.
MDSetTextWavePointValue Sets the value of a single element of text wave.

SetTextWaveData Sets the entire contents of a text wave.

209

Chapter 7 — Accessing lgor Data

210

Example

Here isasimple example that illustrates creating awave, filling it with values and setting a wave
property. The underlined items are functions, constants or structures defined in the XOPSupport
library and headers.

static int
MakeWaveO (void)
{
waveHndl wavH;
char waveName [MAX OBJ NAME+1] ;
DataFolderHandle dfH;
long dimensionSizes [MAX DIMENSIONS+1] ;
float* wp;
long p;
double offset, delta;
int hState;
int err;

strcpy (waveName, "waveQO") ;

dfH = NULL; // Put wave in the current data folder
MemClear (dimensionSizes, sizeof (dimensionSizes)) ;
dimensionSizes [ROWS] = 100; // Make 1D wave with 100 points

if (err = MDMakeWave (&wavH, waveName, dfH, dimensionSizes, NT FP32, 1))
return err;

hState=MovelLockHandle (wavH) ; // Lock wave handle in heap
wp = WaveData (wavH) ; // Get a pointer to the wave data
for(p = 0; p < 100; p++)

*Wp++ = pP; // Store point number in wave
HSetState (wavH, hState) ; // Restore lock/unlocked state
offset = 0; delta = .001; // Set X scaling to .001/point

if (err = MDSetWaveScaling(wavH, ROWS, &delta, &offset))
return err;

return 0O;

}

This routine makes a 100 point, single-precision (NT_FP32) 1D wave. The letters“MD” in some
of the XOPSupport routine names indicate that the routine is capable of dealing with multi-
dimensional aswell as 1D waves.

We get a pointer to the main wave data using the XOPSupport WaveData routine. While we use
the pointer to the wave data, we lock the wave in the heap so that the data can not move. In this
example, the locking and unlocking is not necessary because we are doing nothing that could

Chapter 7 — Accessing Igor Data

cause the heap blocks to move. In general, it is necessary to lock the wave when you access its
datathrough apointer.

This code is capable of dealing with single-precision numeric data only. Y ou will see below that
waves can contain one of 8 floating point and integer numeric types, can be real or complex, and
aso can contain text. An XOP programmer can choose to support all of these types or just some
of them. XOPSupport routines described below provide ways to access wave data of any type.

Wave Data Types
Waves can have one of the following data types:

Decimal Bytes Per

Symbol Value Element Description

NT_FP64 4 8 Double-precision floating point (double).
NT_FP32 2 4 Single-precision floating point (float).
NT 132 32 4 Signed 32-hit integer (long).

NT_116 16 2 Signed 16-bit integer (short).

NT_I8 8 1 Signed 8-bit integer (char).

NT_I32 | NT_UNSIGNED 32+64 4 Unsigned 32-bit integer (long).

NT 116 |[NT_UNSIGNED 16+64 2 Unsigned 16-bit integer (short).

NT_I8 | NT_UNSIGNED 8+64 1 Unsigned 8-bit integer (char).

TEXT _WAVE TYPE 0 variable Unsigned 8-bit integer (char).

In addition, any of the types, except for TEXT_WAVE_TYPE, can be ORed with NT_CMPLX
to specify acomplex datatype. For example, (NT_FP32 | NT_CMPLX) represents complex,
single-precision floating point, has a decimal value of 2+1 and takes 2* 4 bytes per element.

Asillustrated in the following sections, you can write your XOP to handle any data type or to
reguire specific datatypes.

211

212

Chapter 7 — Accessing Igor Data

Accessing Numeric Wave Data

This section describes how Igor stores numeric wave data and how you can use the XOPSupport
wave access routines to access the data. The routines mentioned here are described in detail in
Chapter 13. The WaveA ccess sample XOP illustrates how to use them.

The XOP Toolkit supports three different ways to access the numeric datain waves of dimension
1 through 4. The point access method is the easiest and the slowest. The dir ect access method is
the hardest and the fastest. The temporary stor age method is not too hard and reasonably fast.
This section discusses how to choose which method to use.

The Point Access Method

The easiest method is to use the M DGetNumericWavePointVaue and MDSetNumericWave-
PointV alue routines to access a single wave point at atime. For example:

long indices [MAX DIMENSIONS] ;
double value[2]; // real part and imag part (if wave is complex)
int result;

MemClear (indices, sizeof (indices)) ; // Clear unused dimensions.
indices[0] = row;

indices[1] = column;

if (result = MDGetNumericWavePointValue (wavH, indices, value))
return result;

value [0] += 1; // Add one to real part

if (result = MDSetNumericWavePointValue (wavH, indices, value))
return result;

This example assumes that the wave has two dimensions and changes avalue in a given row and
column.

This method is simple because you deal with indices, not with pointers, and you don’t need to
worry about the numeric type of the data. The X OPSupport routines do any numeric conversions
that are needed. It will continue to work with future versions of Igor that support additional
numeric types or use a different organization of datain memory. The downside of this method is
that it is not as fast as possible. The reason for thisis that, each time you call either of the
routines, it must calculate the address of the wave data specified by the indices and then must
convert the data into double precision floating point (unlessit is already in double precision).

Unless your application deals with large arrays and/or accesses the same data points over and
over and over again, the speed penalty will not be very noticeable and the point access method is
agood one to choose. Thisis also the recommended method if you are not comfortable dealing
with pointers.

When storing into an integer wave, M D SetNumericWavePointV a ue truncates the value that you
are storing. If you want, you can do rounding before calling M D SetNumericWavePointValue.

Chapter 7 — Accessing Igor Data

The Temporary Storage Access Method

In the temporary storage access method, you use MDGetDPDataFromNumericWave and
M DStoreDPDatal nNumericWave to transfer data between the wave and atemporary storage
buffer that you create. For example:

long numBytes;
double* dPtr;
double* dp;
int result;

numBytes = WavePoints (wavH) * sizeof (double) ; // Bytes needed for copy

if (WaveType (wavH) & NT CMPLX) // Complex data?
numBytes *= 2;

dPtr = (double*)NewPtr (numBytes) ;

if (dPtr==NULL)
return NOMEM;

if (result = MDGetDPDataFromNumericWave (wavH, dPtr)) { // Get copy.
DisposePtr ((Ptr)dPtr) ;
return result;

1

dp = dPtr;

<Use dp to access wave data.>

result = MDStoreDPDataInNumericWave (wavH, dPtr); // Store data.
DisposePtr ((Ptr)dPtr) ;

The datain the buffer is stored in row/column/layer/chunk order. Thisis explained in more detail
on page 216 under Organization of Numeric Datain Memory.

Since the datain the buffer is always double-precision, regardless of the numeric type of the
wave, this method relieves you of having to deal with multiple data types and will continue to
work with future versions of Igor that support additional numeric types. It will aso work with
future versions of Igor that use a different organization of datain memory.

The disadvantage of this method isthat it requires additional memory to hold the temporary copy
of the wave data. Y ou aso pay asmall speed penalty for copying the data.

If you are comfortable with memory allocation and deallocation and with pointers to double-
precision dataand if you are not willing to deal with the complexity of the direct access method
(described below), then the temporary storage method is recommended for you.

When storing into an integer wave, M DStoreDPDatal nNNumericWave truncates the value that you
are storing. If you want, you can do rounding before calling MDStoreDPDatalnNumericWave .

213

Chapter 7 — Accessing Igor Data

The Direct Access Method

The fastest and most difficult method is to use the MDA ccessNumericWaveData routine to find
the offset from the start of the wave handle to the numeric data. For example:

long dataOffset;
double* dp;
int hState;
int result;

if (result=MDAccessNumericWaveData (wavH, kMDWaveAccessMode0O, &dataOffset))
return result;

hState = MoveLockHandle (wavH) ; // Lock handle so data won’t move.

dp = (double*) ((char*) (*wavH) + dataOffset) ; // DEREFERENCE

At this point, dp points to the numeric datain the wave. The datain the buffer is stored in
row/column/layer/chunk order. Thisis explained in more detail on page 216 under Organization
of Numeric Datain Memory. See Chapter 13 for an example illustrating the use of

MDA ccessNumericData.

There are three difficulties in using the direct access method.

First, you need to lock the wave handle so that the data block to which it refers can not movein
memory while you are pointing to it. Thislocking is not necessary if you are absolutely certain
that you will do nothing to cause the blocks of memory in the heap to move. Unless you are doing
something quite simple with the data, it is usually difficult to be certain that thisis the case and
will remain the case as you change the code. Thus, locking the handle, using Movel ockHandle,
is recommended. It is critical to remember to restore the state of the handle, using HSetState,
when you are finished with it so that it doesn’t remain locked, clogging the heap.

The second and greatest difficulty isthat you need to take into account the data type of the wave.
Igor numeric waves can be one of the eight numeric types listed above. Y ou need a different type
of pointer to deal with each of these datatypes. Thisisillustrated in the example for

MDA ccessNumericWaveData in the WaveA ccess sample XOP. If you are using C++, you can
use atemplate to handle all of the data types.

Thefina difficulty isthat, because you are pointing directly to the wave data, you need to know
the layout of the datain memory. If afuture version of Igor changes thislayout (not very likely),
your XOP will no longer work. Y our XOP will not crash in that event, because the

MDA ccessNumericWaveData routine will see that you have passed it “kMDWaveA ccess-
ModeOQ”. It will deduce from this that your XOP is treating the datain away which, in the future
version of Igor, isno longer appropriate. Thus, MDA ccessNumericWaveData will return anon-
zero error code result which your XOP will return to Igor. You will see an error dert in Igor

214

Chapter 7 — Accessing Igor Data

telling you that your XOP is obsolete and needs to be updated. Using the WaveData X OP-
Support routine is functionally equivalent to using MDA ccessNumericWaveData except that
WaveData does not provide this compatibility check.

Because of the difficulties listed here, we recommend that you use the MDA ccessNumeric-
WaveData wave access method only in cases where you need the absolute top speed with
minimal memory requirements. For many applications, it may be reasonable for you to support
only some of the Igor numeric types, typically NT_FP64 and NT_FP32.

Speed Comparisons

The WaveA ccess sample XOP implements routines that fill a 3D wave using each of the wave
access methods described above. To try them, compile the WaveAccess XOP and install it in the
Igor Extensions folder. On Macintosh, make sure there’ s plenty of memory allocated to Igor Pro.
Launch Igor Pro and execute the following commands:

Make/N=(50,50,50) wave3D
Variable timerRefNum

// Enter the next three lines as one command line
timerRefNum = StartMSTimer
WAFill3DWaveDirectMethod (wave3D)

Print StopMSTimer (timerRefNum)/le6

Repeat replacing WAFilI3DWaveDirectM ethod with WAFill 3DWavePointM ethod and
WAFill3DWaveStorageM ethod.

The following times were recorded for filling a 50x50x50 double-precision wave.

System Direct Access Temp Storage Point Access
IMac 800MHz, Mac OS X 0.0157 s 0.0311s 0.0346 s

G4, 1250MHz, Mac 0S 9.2 0.0142 0.0231 0.0211
Generic PC, 800MHz, Windows 2000 0.0071 0.0211 0.0591

215

Chapter 7 — Accessing Igor Data

216

Organization of Numeric Data in Memory

Using the direct or temporary storage wave access methods provides you with a pointer to wave
datain memory. Y ou need to know how the data is organized so that you can accessitin a
meaningful way.

The pointer that you get using the direct access method is a pointer to the actual wave datain the
block of memory referenced by the wave handle. The pointer that you get using the temporary
storage method is a pointer to a copy of the data. Data is organized in the same way in each of
these methods.

Numeric wave datais stored contiguously in one of the supported data types. To access a
particular element, you need to know the number of elementsin each dimension. To find this, you
must call MDGetWaveDimensions. This returns the number of used dimensionsin the wave and
an array of dimension lengths. The dimension lengths are interpreted as follows:

dimensionSizesf ROWS] Number of rowsin acolumn

dimensionSizes COLUMNS] Number of columnsinalayer Zerofor <2D waves
dimensionSize LAY ERS] Number of layersinachunk Zero for <3D waves
dimensionSizes CHUNKS] Number of chunksinthewave Zerofor <4D waves

The symbols ROWS, COLUMNS, LAY ERS and CHUNKS are defined in IgorXOP.h as 0, 1, 2
and 3 respectively.

For awave of n dimensions, dimensionSizes[0..n-1] will be non-zero and dimensionSizes[n] will
be zero.

The datais stored in row/column/layer/chunk order. This meansthat, as you step linearly through
memory one point at atime, you first pass the value for each row in the first column. At the end
of the first column, you reach the start of the second column. After you have passed the data for
each column in the first layer, you reach the datafor the first column in the second layer. After
you have passed the data for each layer, you reach the data for the first layer of the second chunk.

If the datais complex, the real and imaginary part of each data point are stored contiguously, with
thereal part first.

Chapter 7 — Accessing Igor Data

Accessing Text Wave Data

This section describes how Igor stores text data and how you can use the XOPSupport wave
access routines to access the data. The routines mentioned here are described in detail in Chapter
13. The WaveAccess sample XOP illustrates how to use them.

Each element of atext wave can contain any number of characters. There are no illegal
characters.

Igor stores all of the data for atext wave in the block of memory referenced by the wave handle,
after the wave structure information. The wave structure contains another handle in which Igor
storesindices. Theindicestell Igor where the text for any given element in the text wave begins.

Y ou should not attempt to access the text data or the text indices directly. Instead, use the two
XOPSupport routines provide for getting and setting the contents of an element of atext wave.
For example, hereis a section of the WAModify TextWave routine in WaveA ccess.c:

indices[1] = column;
for (row=0; row<numRows; row++) {
indices [0] = row;

if (result = MDGetTextWavePointValue (wavH, indices, textH))
goto done;

<Modify the text in textH>;

if (result = MDSetTextWavePointValue (wavH, indices, textH))
goto done;

}

MDGetTextWavePointV alue gets the contents of a particular element of the text wave which in
this example is a 2D wave. The contents are returned via the pre-existing textH handle. textH is
allocated by and belongsto the calling XOP, not to Igor.

textH contains just the characters in the specified element of the text wave. It does not contain a
count byte, atrailing null character or any other information. To find the number of charactersin
the element, use GetHandleSize. If you want to treat the contents of the handle as a C string, you
must null-terminate it first. Remember to remove the null terminator if you pass this handle back
to Igor. You also must lock textH, using Movel ockHandle, while using the text if thereis any
chance of causing the blocks of memory in the heap to move. If you lock textH, you must
remember to restore its locked/unlocked state, using HSetState.

If you can tolerate setting a maximum length for an element, you can use the XOPSupport
GetCStringFromHandle and PutCStringlnHandle to move the text between the handleand aC
string which is easier to deal with. Using this technique, you don’'t need to worry about adding or
removing null terminators or locking or unlocking handles.

217

Chapter 7 — Accessing Igor Data

218

M D SetTextWavePointV alue sets the specified element of the text wave. textH still belongs to the
calling XOP. Igor just copies the contents of textH into the wave.

For dealing with the entire contents of large text waves, MDGetTextWavePointV alue and

M D SetTextWavePointValue may be too slow. When running with Igor Pro 5.04 or later you can
use the faster but more complicated GetTextWaveData and SetTextWaveData routines which are
described in Chapter 13.

For dealing with the entire contents of large text waves, MDGetTextWavePointVaue and

M D SetTextWavePointVaue may be too slow. When running with Igor Pro 5.04 or later you can
use the faster but more complicated GetTextWaveData and SetTextWaveData routines which are
described in Chapter 13.

Wave Scaling and Units

A wave has units and scaling for each dimension. In addition, it has units and full scale values for
the data stored in the wave. Consider the following example of a 1D wave which stores voltage
versus time:

0 0.0 s 3.57 v
1 0.1 s 3.21 v
2 0.2 s 297 v
3 0.3 s 273 v
4 04 s 244 v
5 05 s 2.03 v
Row Inde>|< X Indeu Datr!l J Data full scale = -10, 10
X Unit: Data Unit:

For a 1D wave, the row indices are aso called point numbers. The X indices are calculated by
Igor from the row indices using the scaling information for dimension 0 of the wave. Y ou can set
this scaling using a" SetScale x" command from within Igor and using the MD SetWaveScaling
XOPSupport routine from an XOP. Y ou can set the X unitsusing a"SetScale x" command from
within Igor and using the MD SetWaveUnits operation X OPSupport routine from an X OP.

Y ou can set the data units and data full scale values using a " SetScale d" command from within
Igor and using the SetWaveUnits and SetWaveScaling X OPSupport routines from an XOP. The
datafull scaleis not analogous to the X scaling information. It merely is arecord of the nominal
full scale value for the data. For example, if you acquired the data using a digital oscilloscope set
to the +/- 10V range, you can record thisin the datafull scale property of the wave. If thisis not
appropriate for your data, you can ignore the data full scale.

Chapter 7 — Accessing Igor Data

Considering a 2D wave, we see that the concepts of row indices, X indices and X units are
extended to 2 dimensions, yielding columnindices, Y indicesand Y units.

0 1 2 Column Index
0.0m 25m 50m Y Index and Units
0 0.0 s 3.57 v 8.24 v 0.14 v
1 0.1 s 3.21 v 8.44 v 0.26 v
2 0.2 s 297 v 8.76 v 0.33 v
3 0.3 s 273 v 8.94 v 0.47 v
4 04 s 244 v 9.31 v 052 v
5 05 s 2.03 v 9.45 v 055 v

3 —

Row Inde X Index | Data J Data J Data J
X Unit Data Unit Data Unit Data Units

Data full scale = -10, 10

Y ou can set both the X (row) and Y (column) units and scaling using a SetScale command from
within Igor and using the MD SetWaveUnits and M D SetWaveScaling X OPSupport routines from
an XOP. If we extend to three dimensions, we add Z (layer) units and scaling and still use the
same routines to set them.

Note that, as you go from 1D to 2D, you still have only one data units string and one data full
scale. Thisistrue no matter how many dimensions you use.

Prior to Igor Pro 3.0, when waves were restricted to one dimension, we spoke of awave as having
X unitsand Y units. When we extended Igor to support multi-dimensional waves, we realized
that the term Y units was incorrect. This term should have been reserved for the units of the
column dimension in multi-dimensional waves. For a 1D wave, we now speak of X (row) units
and data units. For a 2D wave, we speak of X (row) units, Y (column) units and data units.

Because of this history, the WaveUnits and SetWaveUnits X OPSupport routines deal with the X
units of the wave and the data units of the wave. The newer MDGetWaveUnits and MDSetWave-
Units routines deal with the units of all dimensions, including the X units and data units.

A similar situation holds for the WaveScaling and SetWaveScaling calls. These calls get or set
the wave' s X scaling and its data full scale values. The new MDGetWaveScaling and MDSet-
WaveScaling routines deal with the scaling of al dimensions, including the X dimension, and can
also deal with the datafull scale.

219

Chapter 7 — Accessing Igor Data

220

Numeric and String Variables

This section decribes accessing variables other than an Operation Handler operation’ s runtime
output variables (e.g., V_flag). For information on setting runtime output variables see Runtime
Output Variables on page 174. Except for thistechnique, it is not possible for an XOPto set a
function local variable. This section pertainsto global variables and macro local variables.

Unlike waves, globa and macro local variables are not defined by handles. Instead, Igor
maintains an internal table of variable names and values.

A numeric variable is always double-precision real (NT_FP64) or double-precision complex
(NT_FP64 | NT_CMPLX).

The content of a string variable is stored in a block of memory referenced by a handle but thisis
not the same as awave handle. In the case of the wave handle, the handle contains the wave
structure as well as the wave data. Consequently, the wave handle completely definesawave. In
the case of a string variable, the handle contains just the variable’ s data. It does not contain the
string variable’s name or areference to its data folder.

A string handle contains the string’ s text, with neither a count byte nor atrailing null byte. Use
GetHandleSize to find the number of charactersin the string. To use C string functions on this
text you need to copy it to alocal buffer and null-terminate it or add a null terminator to the
handle and lock the handle. If you pass the handle back to Igor, you must remove the null
terminator and unlock the handle.

If you can tolerate setting a maximum length for a string, you can use the X OPSupport
GetCStringFromHandle and PutCStringlnHandle to move the text between the handleand aC
string which is easier to deal with. Using this technique, you don’t need to worry about adding or
removing null terminators or locking or unlocking handles.

The XOPSupport library provides routines to create variables, kill variables, get the value of
variables and set the value of variables. All of these routines require that you pass the variable
nameto Igor. Some routines also allow you to specify the data folder in which the variable is to
be created or found. Those routines that do not allow you to specify the data folder work in the
current data folder.

Chapter 7 — Accessing Igor Data

Routines for Accessing Variables

The XOPSupport routines for dealing with variables are described in detail in Chapter 13. Here is
asummary of the commonly-used routines.

Creating Variables

Routine Description
Variable Creates an Igor numeric or string variable.
SetlgorintVar Creates if necessary and then sets a numeric variable to an integer

SetlgorFloatingV ar

SetlgorComplexVar

SetlgorStringVar

value.

Creates if necessary and then sets a numeric variable to afloating
point value.

Creates if necessary and then sets a numeric variable to a complex
floating point value.

Creates if necessary and then sets a string variable.

Getting Variable Contents

Routine Description

FetchNumVar Gets the value of a numeric variable.

FetchStrvar Gets up to 255 characters from a string variable.
FetchStrHandle Gets any number of characters from a string variable.
GetDataFol derObject Gets the value of numeric or string variable.

221

Chapter 7 — Accessing Igor Data

Setting Variable Contents

Routine Description

StoreNumV ar Sets the value of anumeric variable.

SetlgorintVar Creates if necessary and then sets a numeric variable to an
integer value.

FetchStrHandle Gets any number of characters from a string variable.

SetlgorFloatingV ar

SetlgorComplexVar

SetlgorStringVar
SetFilel oaderOutputVariables

SetOperationFilel oaderOutput
Variables

SetDatalol derObject

Createsif necessary and then sets a numeric variableto a
floating point value.

Createsif necessary and then sets anumeric variableto a
complex floating point value.

Createsif necessary and then sets a string variable.
Specialized for file-loader XOPs.

Specialized for file-loader XOPs. Called from direct external
operations only.

Sets the value of numeric or string variable.

222

Chapter 7 — Accessing Igor Data

Example

Here is asimple example that illustrates creating numeric and string variables and getting and
setting their values. The underlined items are functions, constants or structures defined in the
XOPSupport library and headers.

static int
MakeVariables (void)
{
char varName [MAX OBJ NAME+1] ;
double realval, imagVal;
char strValue[256];
int err;

strcpy (varName, "numVarQ") ;
realVal = 3.14159;

if (err= SetIgorFloatingVar (varName, &realVal, 1)) // Create and set
return err;
if (FetchNumVar (varName, &realVal, &imagVal)==-1) // Fetch value

return EXPECTED VARNAME;

strcpy (varName, "strVar0o");

strcpy (strvValue, "This is a string variable.");

if (err= SetIgorStringVar (varName, strValue, 1)) // Create and set
return err;

if (err= FetchStrVar (varName, strValue)) // Fetch wvalue

return err;

return O;

}

The last parameter in the SetlgorFloatingVar and SetlgorStringVar routines reguests that 1gor
make the variables global. If this parameter were zero and if our routine were called during the
execution of amacro, Igor would make the variables local to the macro. Y ou can not create a
local variable in a user-defined function at runtime as these are created by Igor when the function
iscompiled.

For adiscussion of creating output variables from an external operation, analogousto theV_
variables created by many Igor operations, see Runtime Output Variables on page 174.

The string part of this example uses routines that take and return C strings. Thisis easier than
dealing with the actual string variable handle and is fine as long as the string variable contains
255 or fewer characters.

This example works in the current data folder. In most cases, thisis the appropriate behavior.

223

Chapter 7 — Accessing Igor Data

224

Dealing With Data Folders

Datafolders provide away to store waves, numeric variables and string variables in a hierarchy.
Data folders are analogous to file system folders. However, data folders are maintained entirely
by Igor.

If you save an Igor experiment in a packed experiment file, the entire hierarchy is saved in the
packed file. If you save an experiment in an unpacked file, Igor creates file system folders to
mirror the data folder hierarchy. Because these file system folders are created only when you save
an experiment unpacked, you should not assume that afile system folder existsto mirror any
given Igor datafolder. Y ou should think of datafolders as a hierarchy maintained by Igor in
memory and saved to disk for storage purposes.

Igor stores information about each data folders in a DataFolderHandle. Each XOPSupport routine
that deals with data folders returns a DataFolderHandl e to you and/or requires a DataFol der-
Handle from you. Y ou have no way of knowing or need to know the details of DataFolder-
Handles. They are black boxes. Y ou merely receive them from Igor and pass them back to Igor.

When you get a DataFolderHandle from Igor, you should use it and forget about it. The handle
belongsto Igor so you should not modify or disposeit. Also, you should not store it long-term
because it will become invalid if the user kills the folder or opens a new experiment.

Routines for Accessing Data Folders

The XOPSupport routines for dealing with data folders are described in detail in Chapter 13.
Most of them exist for the benefit of the Igor Data Browser, which is an XOP, and for other
sophisticated XOPs. Here are the data folder routines that are most likely to be of use for atypical
data-folder-aware X OP.

Chapter 7 — Accessing Igor Data

Getting a Handle to a Data Folder

Routine Description

GetDataFolderAndName Returns a data folder handle and an object name.

GetDataFol der Returns a data folder handle.

GetRootDataFolder Returns a handle to the root data folder.

GetCurrentDataFolder Returns a handle to the current data folder.

GetNamedDataFol der Returns a handle to a data folder, given its name or path.
GetWavesDataFolder Returns a handle to the data folder containing a particular wave.
GetParentDatalFol der Returns a handle to the parent of the specified data folder.

GetNumChildDataFolders

GetlndexedChildDataFol der

Returns the number of child data folders within a particular data
folder.

Returns a handle to the specified data folder within a particular
datafolder.

Creating and Killing a Data Folder

Routine

Description

NewDataFolder
DuplicateDataFolder
KillDataFolder

Creates anew datafolder.
Duplicates an existing data folder and its contents.

Kills adatafolder.

225

Chapter 7 — Accessing Igor Data

Accessing Objects in a Data Folder

Routine Description

GetNumbDataFoldersObjects Returns the number of objects (waves, numeric variables,
string variables, datafolders) in a particular datafolder.

GetlndexedDataFolderObject ~ Returns the name of a particular object.

GetDataFol derObject Returns information about a particular object.
SetDatalol derObject Sets information about a particular object.
KillDataFol derObject Kills a particular object.

DuplicateDataFol derObject Duplicates a particular object.

If you ignore the data-folder-related X OPSupport routines, your X OP will work in the current
datafolder. Thisis the appropriate behavior for many applications. Also, no special effortis
required to work with existing wavesin any datafolder. Once you have the wave handle, you can
manipulate the wave without knowing which data folder it residesin.

226

Chapter 7 — Accessing Igor Data

Data Folder Conventions

One of the points of using data foldersisto reduce clutter. If your XOP requires alot of private
waves and/or variables, you should create a data folder to contain your private storage. By
convention, data folders for this purpose are stored in another data folder named Packages which
isintheroot. Thisis discussed in the programming section of the Igor Pro manual.

Here is some code that will create a data folder for your private storage inside the Packages data
folder.

static int
GetPrivateDataFolderHandle (char* dataFolderName, DataFolderHandle* dfHPtr)

{

DataFolderHandle rootDFH, packagesDFH;
int err;

if (err = GetRootDataFolder (0, &rootDFH))
return err;

if (err = GetNamedDataFolder (rootDFH, "Packages", &packagesDFH)) {
// We need to create Packages.
if (err = NewDataFolder (rootDFH, "Packages", &packagesDFH))
return err;

if (err = GetNamedDataFolder (packagesDFH, dataFolderName, dfHPtr)) {
// We need to create our private data folder.
if (err = NewDataFolder (packagesDFH, dataFolderName, dfHPtr))
return err;

}

return 0O;

}

Y ou would call thisroutine like this:

DataFolderHandle privateStorageDFH;
if (err = GetPrivateDataFolderHandle ("MyPrivateData", &privateStorageDFH))
return err;

Of course, you should choose a name for your data folder that will make it clear what it isfor and
is specific enough to avoid conflicts with other packages.

Because the user can kill adatafolder, intentionally or inadvertently, you should not store the
data folder handle but instead should obtain it from Igor, as shown above, each time you need to
useit. Another option is to use the GetDataFolderl DNumber and GetDataFol derByl DNumber
routines, listed in Chapter 13.

227

Chapter 7 — Accessing Igor Data

228

OVEIVIBIW ...ttt be st st et e e e seenesbesaentenee e eneenens 231
Menu Manager ROULINESociiierieiieie e seesie sttt sresre e 232
YL g TH o F= T o | = 232
Summary of Menu Manager ROULINES..........cccoveirenineneseseeeeeeeesenens 233
Adding Menus and MenuU ItEMS.........cocceieiieie e 234
AddiNg aMaIN MENU ..o e 235
Adding Menu IteEMS to 1gor MENUS..........coereimeeeieeneriese e 236
Adding SUDMENUS..........oceeiiiece e 237
Menu IDSVersus RESOUICE IDS........c.cociieneeiireeeee e 238
Responding to Menu SElECHIONS...........ccviirirereeeee e 239
Determining Which Menu Was ChoSenccccceceevevicecciece e, 239
Getting Your Menu Handlecceeviiieie e 240
Determining Which Menu Item Was ChOSen.........cccccevveneninenenieseeeee 241
Detecting the First Time Your Menu Item isChosen..........ccoceeevvveeeenne. 241
Enabling and Disabling Menu HHEMS...........ccoceiiieeveviceece e 242
Enabling and Disabling XOP Menu IemS..........ccccooerininenineneeeeeee 242
Enabling and Disabling 1gor Menu Items...........ccceeeirieninencncseeeeeee 243
Advanced XOP MENU ISSUES..........coerueeeeeireniesiesiesieseeesessesse e ssessenseseesessens 245
Avoiding Menu ID ConfliCtS......cccoveveiiiiieieciese e 245
Dialog POPUP MENUS ..ottt 245
MenuU Barsin WIiNOWSccoeieirieinisese e 246

229

Chapter 8 — Adding Menus and Menu Items

230

Chapter 8 — Adding Menus and Menu Items

Overview

When Igor starts up, it examines each X OP file looking for resources that define menus, menu
items and submenus that the X OP adds to Igor.

An XOP may elect to add no menus or menu itemsto Igor. For example, an XOP that does no
more than add an operation or function to Igor does not need a menu or menu item. The XOP
should have none of the resources discussed below in its resource fork.

An XOP may need just one simple menu item in an existing Igor menu. For example, an XOP
that adds a number-crunching operation to Igor might want to simply add one menu item to Igor’s
Analysis menu.

An XOP may need more than one simple menu item in an existing Igor menu. For example, an
XOP that allows Igor to load and save a particular file format might want to add one menu item to
Igor’s Load Waves menu and another menu item to Igor’ s Save Waves menu.

An XOP may want to add a menu item to a built-in Igor menu but might want that menu item to
have a submenu.

An XOP may want to have its own menu in the main menu bar and might want that menu to have
submenus. This would be appropriate for an elaborate X OP that adds major functionality to Igor.

The MenuXOP1 sample XOP illustrates all of the above. It also shows how an XOP can
determine which of its menu items has been selected and how to access each menu item to enable
or disableit.

This chapter discusses many different ways for an XOP to use menus, submenus, and menu
items. If your XOP merely adds a single unchanging menu item to Igor, you can skip down to the
section Adding Menu Itemsto Igor Menus. This explains how to use an XMI 1 resource to add
amenu item. Then add code to your X OPENtry routine to respond when Igor sends a
MENUITEM message. That isall you need to know to use a single menu item.

231

Chapter 8 — Adding Menus and Menu Items

232

Menu Manager Routines

This section contains background information that most XOP programmers will not need to
know. Y ou need to know this only if your X OP adds, removes, or modifies menus or menu items.

Igor uses Macintosh Menu Manager routines to implement its menus. Thisis true even on
Windows, where Igor emulates the Macintosh Menu Manager. Because XOP menu items are
integrated with Igor menu items, X OPs that add menu items must also use Macintosh Menu
Manager routines, even when running on Windows.

On Macintosh, the menu manager routines previously were provided by the Mac OS. In the
Carbon API, Apple changed the names of all of the routines. In order to support old XOPs, these
routines are now supported through the X OPSupport library. On Windows, they are provided by
the IGORL.lib library, with which all XOPslink.

This section does not describe the Macintosh Menu Manager completely. Instead, it describes a
very simplified version of the menu manager and how an XOP typically uses menu manager
routines to manipulate its menus. The routines described below can be used on both Macintosh
and Windows.

MenuHandles

For each menu, there is a menu handle, of type MenuHandle, that contains all of the information
for the menu. For XOPs that add one or more menus to Igor, the menus and menu handles are
created automatically by Igor at launch time, when Igor examines the XOP's XMN1 and XSM1
resources. These resources are described on page 234 in the section Adding Menus and Menu
Items.

Y ou need not be concerned with the exact contents of a menu handle. To operate on it, you will
passit to the menu manager routines. For example, to disable a menu item, you pass the menu
handle to the Disableltem routine. To set the text of a menu item, you pass the menu handle to the
setmenuitemtext routine. Here is an example.

MenuHandle mH;

mH = ResourceMenulIDToMenuHandle (100) ; // Get our menu handle.

if (mH != NULL) // Always test before using.
DisableItem(mH, 1) ; // Disable the first item.
setmenuitemtext (mH, 2, "Capture Image"); // Set text of second item.

}

The ResourceMenulDToMenuHandle routine is not a menu manager routine. It isaregular
XOPSupport routine and is described on page 240 under Getting Your Menu Handle.

Chapter 8 — Adding Menus and Menu Items

Summary of Menu Manager Routines

Here are the menu manager routines that can be used for Macintosh and Windows X OPs. See
Emulated M enu Management Routines on page 502 for a detailed description of these routines.

Routine What It Does
CountMItems Returns the number of menu items in a menu.
DeleteMenultem Deletes a menu item from a menu.

insertmenuitem
appendmenu
getmenuitemtext
setmenuitemtext
Disableltem
Enableltem

Checkltem

Inserts a new item into a menu.

Adds a new item to the end of a menu.
Retrieves the text for amenu item.
Sets the text for a menu item.
Disables (grays out) a menu item.
Enables amenu item.

Adds or removes a check mark from a menu item.

233

Chapter 8 — Adding Menus and Menu Items

Adding Menus and Menu Items

An XOP can add a main menu bar menu, any number of menu items to built-in Igor menus, and
submenus to any menu items. Most XOPs will useit just to add a single menu item, if at all.

This method involves the use of the following resources.

Resour ce What It IsUsed For

XMN1 1100 Adds amenu to the main menu bar.
XSM1 1100 Adds submenus to XOP menu items.

XMI1 1100 Adds menu items to Igor menus.

234

The MenuXOP1 sample XOP illustrates the use of these resources which are described in detail
below. See the MenuXOP1.r and MenuX OP1WinCustom.rc filesin particular.

There are three limitations that you must be aware of.

First, the main menu bar can hold only afinite number of menus. It is possible for menus to be
inaccessible because X OPs have added too many of them. Y ou need to decide if your XOP
should take space on the main menu bar or if it should merely add a submenu to a built-in Igor
menu.

Second, there are 100 menu IDs reserved for al XOP main menus and 50 menu | Ds reserved for
all XOP submenus. It isunlikely that either of these limits will be reached but, since there are a
limited number, you should use no more main menus or submenus than necessary in your XOP.

Finally, you must be careful when you create the resourcesin your XOP that describe your
XOP smenusto Igor. It’s not difficult to cause a crash by specifying the wrong menu 1Ds.

The following sections explain how Igor determines what menus, submenus and menu items your
XOP adds.

Chapter 8 — Adding Menus and Menu Items

Adding a Main Menu

Igor looks for an XMN1 1100 resource. XMN means “ XOP menu”. This resource specifies the
menu or menus, if any that the XOP adds to the main menu bar.

Here is an example of an XMNL1 resource:

// Macintosh
resource 'XMN1' (1100) {
{
100, // menuResID: Menu resource ID is 100.
1, // menuFlags: Show menu when Igor is launched.
}i

// Windows

1100 XMN1

BEGIN
IDR MENU1, // menuResID: Menu resource ID is IDR_MENU1.
1, // menuFlags: Show menu when Igor is launched.
0, // 0 required to terminate the resource.

END

Thefirst field, called menuResID, is the resource ID of the MENU resource in the XOP's
resource fork for the menu to be added to Igor’s main menu bar. The symbol IDR_MENU1 in the
Windows resource is defined in the file resource.h, which is created by the Visual C++ resource
editor.

The second field, called menuFlags, consists of bitwise flags defined in XOP.h as follows:

#define SHOW MENU AT LAUNCH 1 // bit 0
#define SHOW MENU WHEN ACTIVE 2 // bit 1

If bit 0 of the menuFlags field is set then the menu is appended to the main menu bar when Igor is
launched. Thisis appropriate for amenu that is to be a permanent fixture on the menu bar. If bit O
is cleared then the menu is not appended at thistime.

If bit 1 of the menuFlagsfield is set then Igor automatically inserts the menu in the main menu
bar when your XOP’ s window is active and removes it when your XOP' s window is deactivated.

If neither bit is set then your XOP can show and hide the menu on its own. Thisisillustrated by
the MenuX OP1 sample XOP.

The remaining bits are reserved and must be set to zero.

235

Chapter 8 — Adding Menus and Menu Items

236

The resource shown adds one menu to Igor’s main menu bar. To add additional menus you would
add additional pairs of fieldsto the resource.

Adding Menu Items to Igor Menus

Igor looks for aresource of type XMI11 1100 that specifies menu items to be added to built-in Igor
menus. XMI means “XOP menu item”.

Here is an example of an XMI 1 resource:
resource 'XMI1' (1100) { // Macintosh, in MenuXOPl.r.

{

8, // menuID: Add item to menu with ID=8.
"MenuXOP1l Miscl", // itemText: This is text for added menu item.
0, // subMenuResID: This item has no submenu.
0, // itemFlags: Flags field.
!
}i
1100 XMI1 // Windows, in MenuXOPlWinCustom.rc.
BEGIN
8, // menuID: Add item to menu with ID=8.
"MenuXOP1 Misc1\0", // itemText: This is text for added menu item.
0, // subMenuResID: This item has no submenu.
0, // itemFlags: Flags field.
0, // 0 required to terminate the resource.

END

Thefirst field, called menulD, isthe menu ID of the built-in Igor menu to which the menu item
should be attached. The file IgorX OP.h gives the menu ID’ s of al Igor menus.

The second field, called itemText, is a string containing the text for the added menu item.

The third field, called subMenuResID, is the resource ID of the MENU resourcein the XOP's
resource fork for the submenu to be attached to the menu item or 0 for no submenu.

The fourth field, called itemFlags, consists of bitwise flags defined in XOP.h which tell Igor
under what conditions the menu item should be enabled or disabled. See Enabling and Disabling
XOP Menu Items on page 242.

The resource shown adds one menu item to a built-in Igor menu. To add additional menu items
you would add additional sets of fields to the resource. See MenuXOPL1.r and
MenuX OP1WinCustom.rc for examples.

Chapter 8 — Adding Menus and Menu Items

Adding Submenus

Igor looks for aresource of type XSM1 1100. XSM means “XOP submenu”. This resource
specifies the submenu or submenus that the X OP wants to attach to menu items in menus that
belong to the XOP (not built-in Igor menus).

Here is an example of an XSM1 resource:

// Macintosh
resource 'XSM1' (1100) {

{

101, // subMenuResID: Add submenu with resource ID 101
100, // mainMenuResID: to menu with resource ID 100
1, // mainMenultemNum: to item 1 of main menu

}
}i

// Windows

1100 XSM1
BEGIN
IDR MENU2, // subMenuResID: Add submenu with resource ID IDR MENU2
IDR_MENU1, // mainMenuResID: to menu with resource ID IDR_MENU1l
1, // mainMenultemNum: to item 1 of menu.
0, // 0 required to terminate the resource.
END

Thefirst field, called subMenuResID, is the resource ID of the MENU resource in the XOP's
resource fork for the submenu to be attached to a menu item.

The second field, called mainMenuResID, is the resource ID of the MENU resourcein the XOFP's
resource fork for the menu to which the submenu is to be attached.

The third field, called mainMenultemNum, is the item number in that menu to which the
submenu is to be attached.

The symbols IDR_MENU1 and IDR_MENUZ in the Windows resource are defined in the file
resource.h, which is created by the Visual C++ resource editor.

The resource shown adds one submenu to an XOP menu. To add additional submenus you would
add additional sets of fields to the resource.

mainMenuResl D and mainMenultemNum normally will refer to a menu declared in the XMN1

resource but can aso refer to amenu declared in a previous record of the XSM1 resource. This
allows submenus to have submenus.

237

238

Chapter 8 — Adding Menus and Menu Items

Menu IDs Versus Resource IDs

On Macintosh only, when adding a MENU resource to your XOP, make sure that the menu 1D
and the resource ID are the same. The resource ID is used by the Macintosh Resource Manager
but the Macintosh Menu Manager cares about the menu ID, not the resource ID. Hereis a correct
Rez resource description:

resource 'MENU' (100) { // Resource ID is 100
100, // Menu ID is same as resource 1D
textMenuProc,
Oxffffffff,
enabled,
n VDT n ,

{
}

Chapter 8 — Adding Menus and Menu Items

Responding to Menu Selections

When the user chooses an XOP' s menu item, Igor loads the XOP into memory (if it’s not already
loaded) and sends a MENUITEM message to the XOP, passing it amenu ID and an item number
that specify which item in which menu was chosen. The XOP responds by performing the
appropriate action. It returns an error code to Igor, using the SetX OPResult X OPSupport routine,
which indicates any problems encountered. If an error did occur, Igor presents a dialog with an

appropriate error message.

Igor sends the MENUITEM message to Windows XOPs as well asto Macintosh XOPs. Windows
XOPs will not receiveaWM_COMMAND message from the Windows OS when the XOP's
menu item is chosen.

How you interpret the menul D and itemNumber parameters that come with the MENUITEM
message depends on how your XOPis set up.

Determining Which Menu Was Chosen

If your XOP adds just one menu item to Igor then matters are simple. When you receive the
MENUITEM message, you know what the user chose without considering the menulD and
itemNumber parameters.

Matters become more complex if your XOP adds more than one menu item. To understand this
you need to know abit about menu IDs. A menu ID is a number associated with a particul ar
menu in a program. When the user selects a menu item, the Macintosh Menu Manager tells the
program which menu was selected by passing it amenu ID. Because the Windows version of Igor
uses Macintosh emulation for menus, even Windows X OP menus have menu I1Ds.

In a standalone application, amenu ID for agiven menu is normally the same as the resource ID
for the resource from which the menu came. For example, Igor’s Misc menu hasamenu ID of 8
and is defined by a MENU resource with resource ID=8 in Igor’ s resource fork.

For XOPs, matters are slightly complicated. There could be several XOPs with MENU resources
with ID=100 in their resource forks. Obviously, when al of these menus are loaded into memory,
they can not al have menu IDs of 100. To get around this, Igor assigns new menu IDsto each
XOP menu. This occurs when Igor inspects each XOP' s resources at the time Igor is launched.

The original resource ID of the XOP' s menu is called the “resource menu ID”. The ID assigned
by Igor is called the “actual menu ID”.

When you write your XOP, you do not know the actual menu ID that your menu or menus will
have when your XOP is running. Therefore, you need away to transl ate between the actual menu
ID and the resource menu ID. The XOP Toolkit provides two routines to handle this:

239

Chapter 8 — Adding Menus and Menu Items

240

int
ResourceToActualMenulID (resourceMenulD)
int resourceMenulD;

Given the ID of aMENU resource in the XOP' sresource fork, returns the actual menu ID of that
resource in memory.

Returns 0 if XOP did not add this menu to Igor menu.

int
ActualToResourceMenulD (menulD)
int menulD;

Given the actual ID of amenu in memory, returns the resource ID of the MENU resource in the
XOP sresource fork.

Returns 0 if XOP did not add this menu to Igor menu.

Imagine that your XOP adds one menu to Igor. When you get the MENUITEM message from
Igor, you know that the menul D passed with that message is the actual menu ID for the XOP's
menu so you don’t need to use the Actua ToResourceMenul D routine.

On the other hand, if your X OP adds two menus to Igor then, when you get the MENUITEM
message, you do need to use the Actua ToResourceMenul D routine to determine which of your
two menus was sel ected.

In order to change your menu, for example, to disable one of itsitems, you need its menu handle.
Y ou can get the menu handle by calling GetMenuHandle or by calling ResourceMenulDTo-
MenuHandle. These are described in the next section. If you use GetMenuHandle, you need to
use the ResourceToActualMenul D routine in order to get your menu's actual menu ID.

Getting Your Menu Handle

To actually do anything with your menu, such as enable or disable an item, you need to get a
menu handle. Once you have the actual menul D, you can get the menu handle using the
Macintosh Menu Manager GetM enuHandl e routine. However, if your menu is hidden,
GetMenuHandle will return NULL. Y ou should always be prepared to handle aNULL return
value from GetMenuHandle.

The XOPSupport routine ResourceM enul DToMenuHandle provides away to get your menu
handle even if it is hidden. Unlike GetMenuHandleg, it takes the menu's resource 1D, not its actual
ID, as a parameter.

MenuHandle
ResourceMenuIDToMenuHandle (resourceMenulID)
int resourceMenulD;

Chapter 8 — Adding Menus and Menu Items

Use thisto get a handle to a menu or submenu that you have added to Igor. Do not use it to get a
handle to built-in Igor menus. Unlike the Macintosh Toolbox GetMenuHandle routine,
ResourceMenulDToMenuHandle will return your menu handle even if it is hidden.

resourceMenul D is the resource ID of your menu in your resource fork.

Determining Which Menu Item Was Chosen

When your XOP adds an item to a built-in Igor menu, you always know the menu 1D for the
menu since it isdefined in IgorXOP.h and is fixed for al time. However, since the menu itemis
appended to the end of the menu, you will not know the item’ s item number when you write the
XOP. The ResourceT oA ctual ltem and Actual ToResourcel tem routines translate between resource
item numbers and actual item numbers. Menu item numbers start from one.

int

ResourceToActualltem(igorMenulID, resourceltemNumber)
int igorMenulD;

int resourceltemNumber;

Given the ID of abuilt-in Igor menu and the one-based number of a menu item specification in
the XM11 resource in the XOP' s resource fork, returns the actual item number of that item in the
Igor menu.

Returns 0 if the XOP did not add this menu item to Igor menu.

int

ActualToResourceltem(igorMenuID, actualIltemNumber)
int igorMenulD;

int actualItemNumber;

Given the ID of abuilt-in Igor menu and the actual number of a menu item in the Igor menu,
returns the one-based number of the specification in the XMI1 resource in the XOP' s resource
fork for that item.

Returns 0 if the XOP did not add this menu item to Igor menu.

Detecting the First Time Your Menu Item is Chosen

Y ou may want to know if your XOP was just loaded into memory and INITed when you receive
the MENUITEM message so that you can do something special the first time. Use the

GetX OPStatus X OPSupport routine and test the XOPINITING bit in the resulting status. If itis
set then the user selecting your menu item caused your XOP to be loaded into memory. If it is not
set then your XOP was aready in memory and INITed when the user selected your item.

241

Chapter 8 — Adding Menus and Menu Items

Enabling and Disabling Menu Items

When the user clicks in the menu bar or presses a keyboard equivalent, Igor allows all XOPs that
arein memory to enable or disable menu items.

If an XOP window is the active window, Igor Pro disables all built-in menu items that pertain to
the active window (e.g., Cut, Copy, Paste). It enables all menu items that can be invoked no
matter what the active window is (e.g., Miscellaneous Settings, Kill Waves, Curve Fitting). Then
it sends the MENUENABLE message to each loaded X OP that adds a menu or menu item to
Igor. As of Igor Pro 5, Igor sends the MENUENABLE message to the XOP that created the
active window even if that XOP added no menu items. Each XOP can set its own menu items as
it wishes. If its window is the active window, the XOP can a so re-enable built-in Igor menu
items that apply to the active window.

Igor sends the MENUENABLE message to Windows XOPs as well as to Macintosh XOPs.
Windows XOPs will not receiveaWM_INITMENU message from the Windows OS.

An XOP whose window is active can respond when the user selects a menu item. The menu item
may be a built-in Igor menu item or it may be a custom item, created by the XOP. If the user
selects a built-in Igor menu item and the XOP’ s window is the active window then Igor sends the
XOP amessage. Examples are the CUT, COPY, and PASTE messages. If the user selects an
XOP's custom menu item then Igor sends the MENUITEM message.

Since the XOP can respond to built-in and X OP menu items, it needs away to enable and disable
these items.

Enabling and Disabling XOP Menu Items

When you receive the MENUENABLE message you can enable or disable items added to the
menu by your XOP. To do this, you need to determine the menu ID and item number of your
menu item and then call the Enableltem or Disableltem menu manager routines. The section
Responding to M enu Selections explains how to determine the menu ID and item number of
your menu item.

There is another method which allows Igor to automatically enable and disable X OP menu items
added to built-in Igor menus. This method involves the itemFlags field of the XMI1 1100
resource. The XOPTypes.r file defines the following bits for thisfield:

ITEM REQUIRES WAVES ITEM REQUIRES GRAPH
ITEM REQUIRES TABLE ITEM REQUIRES LAYOUT
ITEM REQUIRES GRAPH OR TABLE ITEM REQUIRES TARGET
ITEM REQUIRES PANEL ITEM REQUIRES NOTEBOOK
ITEM REQUIRES GRAPH OR PANEL ITEM REQUIRES DRAW WIN

ITEM REQUIRES PROC_WIN

242

Chapter 8 — Adding Menus and Menu Items

For example, if you set the ITEM_REQUIRES WAVES bit in the itemFlags field of your XMI1
1100 resource, Igor will automatically enable your item if one or more waves exists in the current
data folder and automatically disable it if no waves exist in the current data folder.

For another example, if the ITEM_REQUIRES _GRAPH bit is set, Igor will enable your menu
item only if the target window is a graph.

Enabling and Disabling Igor Menu Items
If your XOP adds awindow to Igor, you might want to enable and disable Igor menu items such
as Cut and Copy when your window is active. This section describes how to do this.

The SetlgorMenultem XOPSupport routine allows the X OP to enable or disable a built-in Igor
menu item without referring to specific menu IDs or item numbers. Here is a description:

int

SetIgorMenultem(message, enable, text, param)

int message; // an Igor message code

int enable; // 1 to enable the menu item, 0 to disable it
char* text; // pointer to a C string or NULL

long param; // normally not used and should be 0

For example, if the user selects the Copy menu item, Igor sends the XOP the COPY message. |If
the X OP wants to enable the Copy menu item, it would call Igor as follows:

SetIgorMenultem (COPY, 1, NULL, O0);

The text parameter will normally be NULL. However, there are certain built-in Igor menus whose
text can change. An example of thisisthe Undo item. An X OP which owns the active window
can set the Undo item as follows:

SetIgorMenultem (UNDO, 1, "Undo XOP-Specific Action", 0);

Igor will ignore the text parameter for menu items whose text is fixed, for example Copy. For
menu items whose text is variable, if the text parameter is not NULL, then Igor will set the text of
the menu item to the specified text.

Thereis currently only one case in which the param parameter is used. If the message is FIND,
Igor needs to know if you want Find, Find Same or Find Selected Text. It looks at the param
parameter for this which should be 1, 2 or 3, respectively. In al other cases, you must pass O for
the param parameter.

SetlgorMenultem returns 1 if there is a menu item corresponding to message or O if not.
Normally you will have no need for this return value.

243

244

Chapter 8 — Adding Menus and Menu Items

Here is some code showing how to enable Igor menu items.

static void
XOPMenuEnable (void)

{

SetIgorMenultem (COPY, 1, NULL, O0);
SetIgorMenultem (CUT, 1, NULL, O0);

Chapter 8 — Adding Menus and Menu Items

Advanced XOP Menu Issues

XOP menus and submenus created using the techniques described above in this chapter are
permanent. Igor creates them at launch time and they persist until Igor quits.

Some very advanced X OPs may need to create menus on their own, for example to implement
popup menus in awindow or in adialog. Thisis something that is commonly done on Macintosh
but not on Windows, because Windows programs generally use combo boxes where Macintosh
programs use popup menus. This section discusses issues that you must take into account if you
create your own menus.

Avoiding Menu ID Conflicts

When Igor creates XOP menus, it makes sure that each menu uses a unique menu ID. When an
XOP creates its own menus, it needs to do the same thing. To avoid menu ID conflicts, XOPs
should not create permanent menus. Instead, they should create menus, use them, and then delete
them. For example, a popup menu in awindow should be created when the user clicks and
deleted when the use rel eases the mouse. Popup menus in dialogs should be created when the
dialog is created and deleted when the dialog is closed. The dialog popup menu X OPSupport
routines behave in thisway so, if you use them to implement your dialog popup menus, you will
avoid conflicts.

Y ou can create atemporary menu by calling newmenu, which creates the menu at runtime or
GetMenu, which load the menu from aresource. If you create a menu via newmenu, you must
dispose it by calling DisposeMenu. Y ou must call DisposeMenu once for each newmenu call. If
you create a menu via GetMenu, you must dispose it by calling ReleaseMenu. Y ou must call
ReleaseMenu once for each GetMenu call.

In addition to deleting menus when you are finished with them, you must also restrict your menu
IDsto ranges that Igor reserves for your use. The ranges 200-219 and 1100-1199 are reserved for
XOP temporary menus. Because of Macintosh Menu Manager restrictions, submenus must fall in
the range 200-219.

Dialog Popup Menus

The recommended method for implementing a popup menu in adialog isto call CreatePopMenu.
CreatePopMenu uses the first free menu ID in the range 1150-1199 to creste a temporary menu.
The menu is disposed when you call KillPopMenus, at the end of the dialog.

For more information of dialog popup menus, see Cross-Platform Dialog Popup Menus on
page 275

245

Chapter 8 — Adding Menus and Menu Items

246

Menu Bars in Windows

It would be nice if a Windows XOP could add a menu bar to its own window. However, thisis
not possible. Igor isaMultiple Document Interface (MDI) application. Windows does not allow
you to add a menu bar to an MDI child window. It does allow you to add a menu bar to an
"overlapped" window. However, overlapped windows do not behave correctly in MDI
applications.

Adding a Simple Window on MaCintoshccceceiiieeve e 250
Adding a Simple Window on WIiNdOWS............ccoereeirinineneseseesesee e 251
CreateX OPWINAOWCIBSS........cooiiieeerieeee et nee e 252
CreateX OPWINGOWccveieieiiieiieiesie sttt nne 252
DEStrOy X OPWINGAOWcceiviiiiiieieeeiesiesie st 252
XOPWINAOWPTOC ...ttt 252
Menus in Windows XOP WINOWS.........ccccoerereeeeereneneneeseneeseeeseseesens 253
TU ("Text ULility") WINAOWS........coov it 254
RECUrSION Probl@MS.......cuo it 254
Igor Window COOrdiNALES..........cceeiueiieiie ettt s 255
Adding XOP Target WINQOWS........cccoveieieieerie e eeeseseesre s see e see e e snesne s 257

247

Chapter 9 — Adding Windows

248

Chapter 9 — Adding Windows

Overview

Y our XOP can add one or more windows to Igor. Of course, doing thisis much more involved
than merely adding an operation or afunction. If you are writing a Macintosh X OP, you will need
to be familiar with the Macintosh Carbon API. If you are writing a Windows XOP, you will need
to be familiar with the Win32 API. Programming with windows can raise many complex issues
and debugging a program that creates a window can be difficult. Y ou should not try to add a
window to Igor unless you are an experienced programmer or you are willing to spend significant
time learning.

An XOP can add a simple one-of-a-kind window. The simplest example of thisisthe
WindowXOP1 X OP, which adds awindow that merely displays a message and responds to menu
selections. Another simple example is TUDemo, which uses the XOP Toolkit "text utility”
routines (TU) to implement a simple text editing window. On the other end of the complexity
scaleis an XOP that adds a type of window to Igor, of which there may be an indefinite number
of instances. An example of thisisthe Igor Pro Surface Plotter (the source code for which is not
part of the XOP Toolkit).

Adding awindow on Macintosh is quite different from adding a window on Windows. This stems
from the very different ways in which these operating systems send messages to awindow. The
main difference is that a Macintosh XOP receives window-related messages (e.g., click, type,
activate, update) from Igor while a Windows X OP receives these messages directly from the
Windows OS.

The WindowXOP1 X OP illustrates the technique of implementing an XOP in two parts: a
platform-independent part and a platform-dependent part. For the platform-dependent part, there
are parallel source files for Macintosh and Windows. For example, the functions

CreateX OPWindow and Destroy X OPWindow are defined in both WindowXOP1Mac.c and
WindowXOP1Win.c, thus allowing WindowX OP1.c to call them on either platform.

Cross-platform XOPSupport routines that deal with windows take parameters of type
XOP_WINDOW_REF. An XOP_WINDOW_REF is a WindowPtr on Macintosh and an HWND
on Windows.

249

Chapter 9 — Adding Windows

Adding a Simple Window on Macintosh

To create a simple window on Macintosh, use the GetX OPWindow X OPSupport routine. This
routine works much like the Macintosh GetNewWindow toolbox routine. However, GetX OP-
Window sets the windowKind field of the resulting window record so that Igor can tell that the
window belongs to your XOP. Y ou must not change this field. In WindowXOP1, GetX OP-
Window is called from CreateX OPWindow.

When you are finished with your window, use the Macintosh DisposeWindow routine to dispose
it. In WindowX OP1, DisposeWindow is called from DestroyX OPWindow.

If your Macintosh XOP adds awindow to Igor it will receive all of the window-oriented

messages from Igor. Y ou must respond properly to the UPDATE message (BeginUpdate. . .
draw . . . EndUpdate) so that the window update event will not be generated over and over again.
Y ou should also set the cursor when you receive the NULLEVENT message. Use the Arrow-
Cursor, IBeamCursor, HandCursor, WatchCursor, or SpinCursor X OPSupport routines or the
Macintosh SetCursor routine to do this. Y ou also need to respond to messages like ACTIVATE,
CLICK, KEY, and many other messages. These are listed in the section M essages for XOPs
with Windows on page 115. The files WindowX OP1.c and WindowXOP1Win.c illustrate how to
respond to these messages.

The itemsin the File and Edit menus may or may not apply to your window. When you receive
the MENUENABLE message and your window is the top window you need to set these items
appropriately. The section Enabling and Disabling M enu Items on page 242 describes how to
do this.

250

Chapter 9 — Adding Windows

Adding a Simple Window on Windows

The programming that you need to do to add a window to Igor is pretty close to standard
Windows programming techniques. Y ou create a window class by calling the Windows
RegisterClass function. Y ou then create a window using the Windows CreateWindowEXx

function. Y our window procedure, which you identified to Windows when you created the class,
receives messages (e.g., WM_KEY, WM_CHAR, WM_ACTIVATE, WM_PAINT) directly from
the Windows OS. The file WindowX OP1Win.c illustrates using these Windows routines and
responding to Windows OS messages.

The main difference between Windows XOP programming and standard Windows programming
isthat you must call the routine SendwWinM essageTolgor from your window procedure. This
gives Igor a chance to do housekeeping associated with your window. SendWinMessageTolgor is
described in detail below.

Another significant difference is that you will not receive WM_COMMAND messages about
menu selections through your window procedure. Rather, you will receive MENUITEM
messages from Igor through your X OPENtry routine. Similarly, you will receive MENUENABLE
messages from Igor instead of WM_INITMENU messages from Windows.

Igor isan MDI (Multiple Document Interface) application. Because of this, all Igor windows,
including X OP windows, must be MDI child windows. Other kinds of windows, including
overlapped windows and model ess dialogs are not supported because they would require
coordination with Igor that is not implemented.

Implementing a window requires that you write at least the following routines. The names used
here are from WindowXOPL. Y ou can use any names that you like for your XOP.

Routine Explanation

CreateXOPWindowClass Registers awindow class with the Windows OS. Called from
the main function.

CreateX OPWindow Creates an XOP window using the registered class.

DestroyX OPWindow Destroys the X OP window using the WM_MDIDESTROY
message.

XOPWindowProc Thisisthe window procedure to which the Windows OS sends

messages and from which you must call the SendWinM essage-
Tolgor function.

251

Chapter 9 — Adding Windows

252

Please refer to the WindowXOP1.c and WindowX OP1Win.c files while reading the following
discussion of these routines.

CreateXOPWindowClass

CreateX OPWindowClass is called from the XOP's main function in WindowXOPl.c and is
defined in WindowX OP1Win.c. It uses standard Windows programming techniques, calling the
Windows RegisterClass function. Notice that the wndclass.hinstance field is set to the XOP's
HMODULE, which we get using the XOPM odule X OPSupport routine.

If you make your XOP transient, using the SetX OPType XOPSupport call, Igor will send you the
QUIT message and will then remove your XOP from memory. The user could later invoke your
XOP again, causing Igor to load it into memory again, and causing your CreateX OPWindow-
Class routine to run again. Registering awindow class that already existsis an error in Windows.
The Windows OS documentation does not discuss how to handle this situation. Therefore, we
recommend that you not make a Windows XOP that creates awindow transient.

CreateXOPWindow

CreateX OPWindow is called from the WindowX OP1 main function in WindowXOPl.c and is
defined in WindowX OP1Win.c. Again, this function uses standard Windows programming
techniques. Note that the results from the XOPModule and IgorClientHWND X OPSupport
functions are passed to CreateWindowEx.

XOP windows must be MDI child windows. This requirement is satisfied by using the
WS_CHILD and WS_EX_MDICHILD constants and by specifying IgorClientHWND as the
parent window.

DestroyXOPWindow

DestroyX OPWindow is called as part of the shutdown process from X OPQuit, after the XOP
receives the CLEANUP message from Igor. Igor sends this message to all running XOPs when it
is about to quit. DestroyX OPWindow is defined in WindowX OP1Win.c.

Y ou must dispose an MDI child window by sending the WM_MDIDESTROY message to the
MDI client window, which you get by calling IgorClientHWND. If you call DestroyWindow
rather than sending the WM_MDIDESTROY message, you will leave Igor in an unstable state.
After sending the WM_MDIDESTROY message, you will receive a barrage of messages from
Windows, including the WM_DESTROY message. It isin responseto WM_DESTROY that you
should dispose of any storage that you have alocated for the window.

XOPWindowProc

XOPWindowProc is the window procedure for windows of the class registered by CreateX OP-
WindowClass. It is defined in WindowX OP1Win.c.

Chapter 9 — Adding Windows

XOPWindowProc is written using standard Windows programming techniques, except that you
must call SendWinM essageTolgor once at the start of the window procedure and once at the end.
This gives Igor a chance to do housekeeping associated with your window. For example, when
your window is activated, Igor compiles the procedure window if necessary and updates the menu
bar, removing any inappropriate menu (e.g., the Graph menu) and installing your XOPs main
menu if it has one.

Y ou pass to SendWinMessageT ol gor the parameters that your window procedure received, plus a
parameter that differentiates the "before" call to SendWinMessageTolgor from the "after” call. If
Igor returns non-zero from the before call, then you must ignore the message. For example, if an
Igor procedure is running, when you call SendWinMessageTolgor, Igor will return non-zeroin
response to mouse and keyboard messages. This allows your X OP window to behave like an Igor
window, which ignores these events during procedure execution.

Igor does not send the following messages to Windows X OPs, because these kinds of matters are
handled through the standard Windows OS messages: ACTIVATE, UPDATE, GROW,
WINDOW_MOVED, CLICK, KEY, NULLEVENT. Instead, your window procedure will
receive WM_MDIACTIVATE, WM_PAINT, WM_SIZE, WM_MOVE, WM_LBUTTON-
DOWN, WM_RBUTTONDOWN, WM_KEY, and WM_CHAR messages from the Windows
OS.

Y our window procedure will not receive WM_COMMAND messages from Windows when the
user chooses your menu items. Instead, you will receive MENUITEM messages from Igor
through your XOPENtry routine. Thisis a consequence of the need to integrate XOP menus and
menu items with Igor menus. Y our window procedure will receive WM_COMMAND messages
when the user touches controls in your window.

Menus in Windows XOP Windows

MDI child windows can not have their own menu bars. For a window to have its own menu bar, it
must be an "overlapped" window, not a child window. However, overlapped windows do not fit
nicely into MDI applications. Igor does not have the infrastructure needed to compensate for this.
Therefore, it is not possible to add overlapped windows to Igor and consequently, it is not
possible to have a XOP window that has its own menu bar.

253

Chapter 9 — Adding Windows

254

TU (" Text Utility") Windows

A TU window isa"text utility" window - asimple plain text editing window. The TUDemo and
VDT sample XOPsillustrate the use of TU windows.

You create a TU window by calling TUNew2. TUNew?2 creates a TU window and returns to the
caller aTU handle and an XOP_WINDOW _REF. The XOP passes the TU handle back to Igor to
perform various operations on the TU window. The XOP_WINDOW_REF is aWindowPtr on
Macintosh and an HWND on Windows.

TUNew2 was added in Igor Pro 3.13 for cross-platform compatibility. The older TUNew function
is available to Macintosh XOPs only. New XOPs should use TUNew?2 for both Macintosh and
Windows.

Igor disposes of awindow created via TUNew2 when you call TUDispose.

A Macintosh TU XOP controls the window by handling messages that Igor sends to the XOP's
XOPEnNtry routine and calling the corresponding TU callback routine. For example, when the user
chooses Copy from the Edit menu, Igor sends your X OP the COPY message. In response, you
call the TUCopy callback function, causing Igor to do the copy.

A Windows TU XOP works the same way except that Igor internally handles certain window-
oriented activities without sending a message to the XOP. The window procedure for the TU
window isinside Igor. This window procedure handles Windows OS messages like
WM_MDIACTIVATE, WM_PAINT, WM_CHAR, and so on, without calling your XOP. Unlike
on Macintosh, Igor does not send the ACTIVATE, UPDATE, GROW, WINDOW_MOVED,
SETGROW, CLICK, KEY, or NULLEVENT messages to the Windows XOP. Consequently, the
Windows X OP has no need to call the corresponding TU callbacks, such as TUActivate,
TUUpdate, TUCIick, and so on. The handling of all other messages (e.g., COPY) is the same as
on Macintosh.

There may be cases in which the Windows TU X OP needs to intervene in the handling of some
window-oriented activities. For example, the VDT X OP needs to handle keyboard messages so
that it can send characters that the user typesto the serial port. To achieve this, the VDT XOP
uses subclassing - a technique described in the Windows API documentation.

Recursion Problems

If you add awindow to Igor, your XOP may be called recursively. This happensif Igor calls your
XOP, your XOP does a callback to Igor, and the callback causes Igor to call your XOP again. For
details on when this can happen and how to handle it, see Handling Recur sion on page 137.

Chapter 9 — Adding Windows

Igor Window Coordinates

This section describes how Igor stores window sizes and positions in a platform-independent
way. You need to know thisif you are writing an XOP that creates a window on both Macintosh
and Windows and if you want your window's size and position to be roughly maintained when
you take an experiment created on one platform and open it on the other.

On the Macintosh, windows are sized and positioned using the SizeWindow and MoveWindow
Mac OS routines. These routines use global coordinates in units of pixels, relative to the top/left
corner of the main screen. Also, pixels are assumed to be roughly one point square in size and
therefore window coordinates can be considered to be in units of points. When specifying a
window size and position to the Mac OS, the programmer specifies the size and position of the
"content region”. Thisisthe area of the window exclusive of thetitle bar and frame. The
following picture shows a graph window created on Macintosh using the command

Display/W=(10,45,410,245) jack

1 é File Edit Data Analysis Macros Windows Graph Mis
O =— Graphljacke————=—HH
1.0

(0,20)
(10,45)

0.5

0.0+

245 - 45

-0.5-

-1.0

T T T T T T T
o 20 40 60 80 100 120

410-10

On Windows, windows are sized and positioned using the SetWindowPlacement Win32 routine.
This routine uses client coordinates, relative to the top/left corner of the client area of the Igor
MDI frame window, in units of pixels. Unlike Macintosh, the relationship between a pixel and a
point is variable on Windows. The Windows user can set it by opening the Display control panel,
selecting the Settings pane, clicking the Advanced button, and using the Font Size control, which
sets the nominal number of pixels per inch.

When WaveMetrics ported Igor Pro to Windows, we needed a way to size and position windows
that would work across platforms. For example, if a user took a Macintosh experiment containing
the graph shown above to Windows, it should have roughly the same size and position. Moreover,
existing experiments and procedures, created long before Igor ran on Windows, had to open and

255

256

Chapter 9 — Adding Windows

run correctly on Windows. WaveMetrics defined "Igor Coordinates' to achieve these goals. The
following picture shows a graph window created on Windows using the command

Display/W=(10,45,410,245) jack

#lgor Pro 3.13

File Edit Data Analpsiz Macros “Windows Graph Misc Help

(0,20) W
(10,45) M GraphD:jack

245 - 45

410-10

Igor coordinates are defined to be in units of points, relative to a spot 20 points above the
bottom/left corner of the menu bar. Thus, the coordinates (0, 20) correspond to the bottom/l eft
corner of the menu bar on both platforms. When used to set the size and position of windows,
Igor coordinates set the size and position of the content region of the window, not the outside
edge of the window frame. We maintain coordinates in floating point because, to accurately
reposition awindow, we need to use fractional pointsin /W=(le&ft,top,right,bottom) flags.

Fortunately, XOPSupport routines are available to do all of the necessary conversions between
native Macintosh or Windows coordinates and Igor coordinates. To get your window's size and
position in Igor coordinates, call the GetX OPWindowlgorPositionAndState X OPSupport routine.
If your XOP stores window coordinates, store them using the results returned from this routine.
To restore the window to the same size and position, call the SetX OPWindowlgorPosition-
AndState X OPSupport routine. These routines work the same on Macintosh and Windows.

Chapter 9 — Adding Windows

Adding XOP Target Windows

A target window type is a class of windows that can be manipulated using commands from the
command line or from Igor procedures. Each target window has a name so that it can be
referenced from commands. Igor Pro currently supports five built-in target window types: graphs,
tables, page layouts, notebooks, and control panels.

An XOP can add atarget window type to Igor. This capability was added to Igor to alow
WaveMetrics to better-integrate the Igor Surface Plotter into the main program. An XOP target
window behaves substantially like a built-in Igor Pro target window. X OP target windows must
be saved as window recreation macrosin the Igor Procedure window and in Igor experiment
files.

Only very advanced Igor users and X OP programmers should attempt to add a target window
typeto lgor.

XOPsthat create target windows require much more cooperation from Igor than other XOPs.
Because they depend on so many Igor Pro behaviors, they are more fragile than normal X OPs.
That is, it ismore likely that a change in Igor Pro behavior could break this kind of XOP. Because
of this fragility and because of the complexity of implementing such an X OP, documentation and
support for implementing XOP target windows is not included with the XOP Toolkit. Instead, it
is available upon request to registered X OP Toolkit users.

To obtain documentation and a sample X OP for implementing an X OP target window, please
send a note to support@wavemetrics.com. Please indicate the version of Igor Pro that you are
using, your XOP Toolkit serial number, which development system you are using, the version of
the devel opment system, and the application that you have in mind.

257

Chapter 9 — Adding Windows

258

Other Programming Topics

Macintosh Memory Management...........cccveveeieeneeserseeesreesreeseesee e see e 261
Pointers AN HaNAIESooveiiieee s 262
UsSiNg aHaNAIE..........ooiieieeee s 264
Accessing [gor Data ObjECLS........coovieeiereieere e 265

Techniques for Cross-Platform Developmentcccccevvveeievececceese e 266

= 1 RSSO 267
File Path CONVErSIONS........cocoeiiieiese e 268

Y0 (o [aTo lT DI T= Lo [269
Alerts and MeSsage BOXES........cceevuiiuiiieriecieeiesesteeie sttt 269
Open and Save File DIialOgs......coiveeriiiee e 269
Dialog RESOUICE IDS....c.eeiceecie ettt 269
MaCINtOSH DIAlOQgS......ecveiiiiieiesii e 270
WiINAOWS DIBlOgS. .. .cueiveeiieieieieisiesies et 270
Cross-Platform DialOgS.......oeeerriieieriesiere e 270
Cross-Platform Dialog POpup MENUS..........cceeeeiieeeieceeee e 275

Macintosh POPUP MENUS..........ccuririirieieieeeeeeeese e 275
Windows POPUP MENUS........ccoiiee e 276
Creating an 1gor-Style DIial0g.......ccvcuviieeieeieesee et 276

Adding Version RESOUICES.........cccueiieiieriesieeiesiesteeseesreseessessesassteseessessesneessens 278
MaCintosh Version RESOUICES..........ccveeerierieeienesieese e see e e see e 278
WindOWS Version RESOUICES........ccceruiiuierierieiiesie e neas 278

SrUCIUrE ATIGNMENE ...t st 279
Shared Structure AlIGNMENT.........ccooiiiiirerereee e 279
File Structure AlIGNMENL.........coii e 280

Using 1gor SIructures as Parameters..........ccovvevveeiceerieecieeneeseeeseeseesessesseesnes 281
SEUCIUIE FTEIAS. ... eee s 282
SINGS TN SIUCTUIES......ecce et 283
NVARSs and SVARS [N SITUCTUIEScoviieeee e 283

259

Chapter 10 — Other Programming Topics

260

Calling User-Defined and External FUNCLIONScccoooieiiieeiene e 285
Example of Caling a User-Defined or External Function.......................... 286
Macintosh Programming ISSUESceecvieeeeieiecie sttt 288
Don't Initialize Macintosh Toolbox Managers..........cccocvvvreneneneneeieneenne. 288
Restrictions on Opening ReSoUrce FOrks.........ccoovvvevenieeeneneeeese e 288

Chapter 10 — Other Programming Topics

Macintosh Memory Management

Igor uses Macintosh-style memory management, even when running on Windows. Because XOPs
need to access Igor data, such as waves, strings, and data folders, X OPs must also use Macintosh-
style memory management, at least in these areas. When running on Macintosh, Macintosh
memory management routines are provided by the Mac OS. When running on Windows, they are
provided by IGOR.lib, with which al Windows XOPs link.

In dealing with your own private data, you can use Macintosh routines, standard C memory
management routines, or Windows memory management routines. Using the standard C or
M acintosh routines makes it easier to write cross-platform X OPs.

If you are writing a simple XOP, much of the information in this section is for background only.
Y ou will not need to manipulate memory directly but instead will call XOPSupport routines. The
main thing that you need to know iswhat a Macintosh handle is, because waves are stored using
Macintosh handles. Thisis discussed later in this section.

The following table lists the Macintosh memory management routines that are commonly used in
XOP programming. These routines, as well as some less commonly used routines, are described
in detail in the section Emulated M acintosh Memory M anagement Routines on page 497.

Routine What It Does

void* NewPtr(long size); Allocates a block of memory in the heap and
returns a pointer to it.

long GetPtrSize(Ptr p); Returns the number of bytesin the block of
memory pointed to by the pointer.

void SetPtrSize(Ptr p, long size); Sets the number of bytesin the block of memory
pointed to by the pointer.

void DisposePtr(void* p); Frees the block of memory pointed to by the
pointer.

Handle NewHandle(long size); Allocates a block of memory in the heap and

returns ahandle to it.

long GetHandleSize(Handle h); Returns the number of bytes in the block of
memory referred to by the handle.

void SetHandleSize(Handle h, long size); Sets the number of bytesin the block of memory
referred to by the handle.

(continued on next page)

261

Chapter 10 — Other Programming Topics

(continued from previous page)

Routine What It Does

void DisposeHandle(Handle h); Frees the block of memory pointed to by the
handle.

int HGetState(Handle h); * Returns an integer containing bits that specify the
state of the block of memory referred to by the
handle.

void HSetState(Handle h, int state); Sets the state of the block of memory referred to
by the handle.

void HLock(Handle h); * Locks the block of memory referred to by the

handle at its current address in the heap.

void HUnlock(Handle h); Unlocks the block of memory referred to by the
handle so that it is free to move in the heap.

void MoveHHi(Handle h); * Moves the block of memory referred to by the
handle to the top of the heap so that it will not
cause heap fragmentation when later locked.

int MemError(void); Returns an error code from the preceding
Macintosh memory management call.

* An XOPSupport routine called Movel ockHandle combines the actions of HGetState,
MoveHHi, and HLock, and is usually used instead of these routines.

Pointers And Handles

When you need to use a large block of memory or if that block needs to persist when the function
that createsit returns, you allocate a block of memory in the heap. In XOP programming, you
typically use a pointer to a block of memory in the heap if that block will never need to be
resized. You use ahandleif the block will need to be resized. The function NewPtr allocates a
block and returns a pointer to that block while the function NewHandle allocates a block and
returns a handle to that block.

A pointer points directly to the block of datain the heap. A handle pointsindirectly to the block
of data - it points to a pointer to the block. The handle contains the address of a master pointer
which contains the address of the block of memory in the heap. The following illustration shows
the relationship of a handle and the block of memory that it refersto.

262

Chapter 10 — Other Programming Topics

Handle h; The Heap

h = NewHandle (100) ;

- Master pointer for h

The relocatable block of memory.

A block allocated by NewPtr is called non-relocatable. A block allocated by NewHandle is called
relocatable. Using handles allows the memory management system to avoid heap fragmentation
by moving relocatable blocks when it needs to allocate a new block.

Because a handle refers to a block of memory indirectly, you must "dereference” the handle
before you can access the block. For example, if h is ahandle returned by NewHandle, then*his
apointer to the block of memory that h refersto. By contrast, a pointer returned by NewPtr points
directly to the block. The following code snippets illustrates the difference between pointers and
handles. Both snippets allocate a block of 2 bytes of memory, set the first byte to the value 1 and
the second byte to the value 2, and then dispose the block.

Ptr p;

p = NewPtr(2);

if (p == NULL)
return NOMEM;

*p - 1;

*(pt) =2

DisposePtr(p);

Handle h;
Ptr p;
h = NewHandle (2) ;
if (h == NULL)
return NOMEM;
p = *h; // DEREFERENCE
*p = 1;
*(p+1l) = 2;
DisposeHandle (h) ;

263

Chapter 10 — Other Programming Topics

264

Using a Handle

In the second snippet above, once h is dereferenced, p points to a relocatable block of memory in
the heap. This means that the memory manager can move the block of memory in order to avoid
heap fragmentation. The memory manager will do this only when it allocates a new block of
memory or resizes an existing block. If you make a call after dereferencing the handle and if that
call directly or indirectly allocates memory, the memory manager may rel ocate the block, leaving
p no longer pointing to the block of memory referenced by h. pisthen said to be a“dangling
pointer”. Because of this, you must be careful about dereferencing handles.

One solution isto lock the block, using HL ock, before dereferencing the handle, and to unlock it,
using HUnlock, when you are finished accessing the block. There are two problems with this
approach. First, locking a block fragments the heap. Second, this approach assumes that the block
was unlocked to begin with. However, a calling routine may have aready locked it. By unlocking
it, we are undermining the calling routine. A solution to these problemsis to use Movel ock-
Handle and HSetState instead of HLock and HUnlock.

Handle h;
Ptr p;
int hState;
h = NewHandle(2) ;
if (h == NULL)
return NOMEM;
hState = MoveLockHandle (h) ;
p = *h; // DEREFERENCE
<Do whatever we want with the block>
HSetState (h, hState) ;

Movel ockHandle moves the block of memory to the top of the heap, which prevents heap
fragmentation, and then locks it, and then returns the state of the block before it was locked.
HSetState restores the block to its original state.

Unfortunately, Movel ockHandle can be slow, because it may cause the memory manager to
move alot of blocks of memory around. A better solution that is often possible isto merely re-
dereference the handle when necessary. Here is an example.

Handle h;
Ptr p;
h = NewHandle (2) ;
if (h == NULL)
return NOMEM;
p = *h; // DEREFERENCE
*p = 1;
<Call a subroutine that may allocation memorys>
p = *h; // RE-DEREFERENCE
* (p+l) = 2;

DisposeHandle (h) ;

Chapter 10 — Other Programming Topics

This technique is somewhat dangerous. Imagine that the you write the routine without the
subroutine call and without the re-dereference. A month later, you add the subroutine call. Will
you remember to add the dereference? If you are very careful, thistechniqueisfine.

Y ou can avoid the need to be so careful by making the dereference temporary and eliminating the
pointer p.

Handle h;
h = NewHandle (2) ;
if (h == NULL)
return NOMEM;
**h = 1;
<Call a subroutine that may allocation memorys>
* (*h+1l) = 2;
DisposeHandle (h) ;

Here, instead of dereferencing h once and storing the dereference, we dereference it each time we
need to access the block of memory. In most cases, thisisthe wise way to doit.

The section Dangling Pointer / Heap Scramble Problems on page 312 contains more
discussion of handles and dereferencing techiques.

Accessing Igor Data Objects

Y ou might use NewPtr and DisposePtr or NewHandle and DisposeHandle when dealing with
your own private data. When dealing with Igor objects, such as waves, you never allocate and
dispose blocks directly. Instead, you call XOPSupport routines, such as MakeWave and
KillWave. Also, you don't dereference awave handle directly. Instead, you call WaveData, which
dereferencesit for you.

See Chapter 7 for details on accessing Igor data.

265

Chapter 10 — Other Programming Topics

266

Techniques for Cross-Platform Development

It is best to maintain one set of source code for both the Macintosh and Windows versions of your
XOP. Much of the source code, such as routines for number crunching or interfacing with Igor,
will be completely platform-independent. Menu-related and file-related routines can also be
platform-independent because of the support provided by the XOPSupport library.

Most XOPs can be written in amostly platform-independent way. The GBLoadWave,
MenuXOP1, NIGPIB2, SimpleFit, SimpleLoadWave, TUDemo, WaveAccess, XFUNC1,
XFUNC2, XFUNC3, XOP1, and XOP2 sample X OPs have no platform-specific C sourcefiles
and few platform-related ifdefs. Routines for number crunching or interfacing with Igor are
inherently platform-independent. Dialog-related, menu-related and file-related routines can also
be written in amostly platform-independent manner using support provided by the X OPSupport
library.

Routines for creating windows, handling user interaction with windows, and drawing in windows
will be mostly platform-dependent. Platform-dependent functionality can be handled by
conditional compilation within a common source file or by creating parallel source filesfor each
platforms. The WindowXOP1 sample XOP illustrates both of these techniques. WindowXOP1.c
has afew platform-dependent ifdefs. The bulk of the platform-dependent codeisin
WindowXOP1Mac.c and WindowX OP1Win.c. The public routines provided by these files have
the same interface regardless of platform. This relieves the main file, WindowXOP1.c, from
platform-dependency, for the most part.

Chapter 10 — Other Programming Topics

File 1/0

The XOP Toolkit provides the following platform-independent routines for creating, deleting,
reading, writing, and otherwise dealing with files:

XOPFileExists XOPCreateFile XOPDéeleteFile
XOPOpenFile XOPCloseFile

XOPReadFile XOPReadFile2 XOPReadLine
XOPWriteFile

XOPGetFilePosition XOPSetFilePosition

XOPAtEndOfFile XOPNumberOfBytesinFile

These routines are defined in XOPFiles.c. Some of them (e.g., XOPOpenFile) use full pathsto
identify files. The full paths must be “native’. That is, on Macintosh, they must use colons as path
separators and on Windows they must use backslashes. Do not use POSIX paths (with forward
dashes), even on Mac OS X, because the Carbon routines called by the XOPSupport routines do
not support forward slashes.

The XOP Toolkit provides symbols to use when allocating buffers for volume names, folder
names, file names and paths. For example:

char volumeName [MAX VOLUMENAME LEN+1];
char volumeName [MAX DIRNAME LEN+1];
char volumeName [MAX FILENAME LEN+1];
char volumeName [MAX PATH LEN+1] ;

These statements all ocate the appropriate size buffers on al platforms. The "+1" adds room for
the null terminator.

The XOP Toolkit also provides the XOPOpenFileDialog and X OPSaveFileDialog routines which
allow the user to choose afile to open or to specify where to save afile. Other X OPSupport
routines provide the means to obtain afull path to afile based on parameters from a command-
line command. The file-loader XOPs Simplel oadWave and GBL oadWave illustrate the use of
these routines.

Earlier XOP Toolkits used Macintosh volume reference numbers, directory 1Ds, and working
directory reference numbers. These things are platform-dependent and are no longer used by the
sample XOPs. As of version 3.1, the XOP Toolkit uses full paths in place of volume reference
numbers, directory 1Ds, and working directory reference numbers.

267

Chapter 10 — Other Programming Topics

File Path Conversions

The Macintosh and Windows operating systems use different syntax for creating a path to afile.
Here are some examples.

M acintosh Windows

hd:Folderl:Folder2:File C:\Folder1\Folder2\File
:Folder2:File \Folder2\File

268

On Mac OS X, POSIX paths with forward slashes are sometimes used. However, Igor and the
XOP Toolkit are based on Apple's Carbon API which does not use POSIX paths. Carbon uses
traditional Macintosh paths with colon separators. When we speak of “Macintosh paths’, we are
talking about colon-separated paths.

Igor commands can refer to files using paths. So that an Igor programmer can write procedures
that work on any platform, commands must work regardless of which platform they are executing
on. For example, the commands:

LoadWave/J/P=Igor ":Examples:Programming:AutoGraph Data:Datal"
LoadWave/J/P=Igor ".\\Examples\\Programming\\AutoGraph Data\\DataO"

must work on both Macintosh and Windows. (Note that in aliteral string in an Igor command,
you must use "\\" to represent a single backslash because backslash is an escape character in

Igor.}

This requirement means that an X OP that deals with afile path must accept the path in either
Macintosh or Windows format. The technique used by the sample XOPs is to convert all paths to
the native format as soon as the path is received from the command. "Native" means that the path
uses Macintosh syntax when running on Macintosh and Windows syntax when running on
Windows. For example, Simplel oadWaveOperation.c calls the GetNativePath routine to convert
its input parameter.

GetNativePath is an XOPSupport routine that converts a path to the conventions of the platform
on which the XOP is running. On Macintosh, it converts to Macintosh conventions and on
Windows, it converts to Windows conventions. If the path aready uses the correct conventions,
GetNativePath does nothing. GetNativePath calls other X OPSupport routines, MacToWinPath
and WinToMacPath. If you use the technique of converting al paths to native format as soon as
possible, then you will not need to use MacToWinPath and WinToMacPath directly but can use
just c.

Other cross-platform path-related X OPSupport routines include ConcatenatePaths,
GetDirectoryAndFileNameFromFullPath, Full PathPointsToFile, and Full PathPointsToFolder.

Chapter 10 — Other Programming Topics

Adding Dialogs

When the user selects your XOP's menu item you may want to put up adialog. The XOP Toolkit
includes support for implementing dialogs on both Macintosh and Windows. This section
describes that support.

Y ou do not need to use the XOP Toolkit dialog routines to implement adialog. Y ou can use any
valid technique. However, using the XOPSupport routines and the techniquesillustrated by the
sample XOPs provides you with away to create one set of dialog code that runs on both

M acintosh and Windows.

Alerts and Message Boxes
The following routines provide a cross-platform way to display simple alert dialogs.

Routine What It Does

XOPOKAIlert Displays a message with an OK button.

XOPOK CancelAlert Displays a message with OK and Cancel buttons.
XOPY esNoAlert Displays a message with Y es and No buttons.

XOPYesNoCancelAlert Displays a message with Yes, No, and Cancel buttons.

Open and Save File Dialogs
These routines provide a cross-platform way to implement Open File and Save File dialogs.

Routine What It Does

XOPOpenFileDiaog Displays a standard Open File dia og.
XOPSaveFileDiaog Displays a standard Save File dialog.

Dialog Resource IDs

By convention, Macintosh XOP resource IDs for DLOG and DITL resources start from 1256. 1D
1256 isreserved for an open file dialog and ID 1257 isreserved for asavefile diaog, if these are
needed by the XOP. Use ID numbers 1258 through 1299 for other XOP dialogs. The range 1100
through 1199 is also available for use in XOPs.

On Windows, you will typically let the Windows resource editor assign dialog resource ID
numbers. The Visual C++ or CodeWarrior development systems store the resource ID numbersin
the resource.h file associated with each project.

269

Chapter 10 — Other Programming Topics

270

Macintosh Dialogs

Implementing amodal dialog in a Macintosh XOP is the same asin a standalone program with a
few exceptions.

An XOP must use the XOPSupport routines GetNewX OPDialog, DoX OPDialog, and
DisposeX OPDialog instead of the corresponding Macintosh routines GetNewDia og,
ModalDialog, and DisposeDialog.

As of Carbon, XOPs must use Apple Appearance Manager-compatible techniques to create
dialogs. Thisincludes creating a digx resource with the kDial ogFlagsUseControlHierarchy bit set.
See Apple’s Appearance Manager documentation and the sample XOPs for details.

Creating the Macintosh resources for an XOP dialog presents a bit of a problem. Apple no longer
provides tools for creating dialog resources. You must either edit the .r file in atext editor or use
a now-obsol ete resource editor such as ResEdit. For more on Macintosh resource creation, see
Creating Resources on Macintosh on page 109.

Y ou may prefer to use more up-to-date, Mac OS X-savvy techniques for creating dialogs, using
nibs and Interface Builder. The XOP Toolkit provides no support for this but there is no reason
why you can’'t do it in your own code.

Windows Dialogs

Implementing amodal dialog in a Windows XOP is the same as in a standalone program. Y ou
create the dialog resources using the Visual C++ resource editor. For more on Windows resource
creation, see Creating Resour ces on Windows on page 109.

Cross-Platform Dialogs

In the sample XOPs (e.g., GBLoadWave), dialogs are implemented using about 90% platform-
independent code and 10% platform-dependent code. The platform-independent code relies on
XOP Toolkit dialog utilities (e.g., SetCheckBox, GetDText, CreatePopMenu) that are
implemented for both platforms. These utility routines take parameters of type
XOP_DIALOG_REF. An XOP_DIALOG_REF isaDiaogPtr on Macintosh and an HWND on
Windows.

The lower level code, for example the code that responds to hits on checkboxes and buttons, is
platform-independent. The highest level dialog code, for example the code that creates the dialog
window, is platform-dependent. This arises from the fact that the Macintosh and Windows
methods of implementing dialogs have very different flows.

Chapter 10 — Other Programming Topics

Here is an outline of atypical Macintosh dialog routine in a standal one program.

int
MacintoshDialog (<parameterss)

{

<local variabless>

GetNewDialog
Initialize dialog items using function input parameters
do
ModalDialog
switch(itemHit)
Handle hits on buttons, checkboxes, etc.
}

until done

Return dialog results using function output parameters
DisposeDialog

return result

}
And hereisatypical Windows dialog routine in a standalone program.

<global variables>

DialogProc (HWND hwnd, UINT msgCode, WPARAM wParam, LPARAM lParam)
{
switch (msgCode) {
case WM_INITDIALOG:
Initialize dialog items using globals.
break;
case WM _ COMMAND :
Handle hits on buttons, checkboxes, etc.
break;

}

int

WindowsDialog (void)

{
Set global variables using globals
DialogBox (DialogProc) ;
Return dialog results using globals
return result

271

Chapter 10 — Other Programming Topics

272

On Macintosh, the programmer retains control in a do-loop. On Windows, the operating system
retains control, sending messages to the dialog procedure as needed.

On Macintosh, we normally use local variables to store values used during dialog execution. The
local variables are defined in the highest level dialog routine - the one that creates the dialog,
loops until the user clicks OK or Cancel, and then disposes the dialog. This does not work on
Windows because the loop is inside the Windows OS (in the DialogBox or DialogBoxParam
function), not in our program. Therefore, there is no placeto store local variables.

To allow the lower-level, platform-independent routines to access dialog-related variables on both
platforms, we encapsul ate these variablesin a structure. In the GBLoadWaveDiaog.c file, this
structureis called a DialogStorage structure. The structure stores all of the values needed to keep
track of things while the dialog is running. On both platforms, the structure is stored asalocal
variable in the highest level dialog routine, GBLoadWaveDialog in GBLoadWaveDialog.c. This
highest level routine isimplmented separately for each platform, using ifdefs. On Windows, the
dialog procedure callback function gains access to this structure via the |Param that comes with
the WM_INITDIALOG message.

Also to allow the lower-level routines to be platform-independent, we arrange things so that the
Windows dialog item 1Ds match the Macintosh dialog item numbers. Macintosh dialog item
numbers start from 1 and increment sequentially. To match this, when we define our Windows
dialog resource, we use the same numbering scheme. This allows the low-level common routines
to refer to dialog items using the same symbol regardiess of platform.

By using XOP Toolkit cross-platform dialog utility routines, matching Windows dialog item IDs
to Macintosh dialog item numbers, and using the DialogStorage structure, we are able to write
dialog code that runs on both platforms without much platform-specific code. In the following
outlines, the underlined routines are identical for Macintosh and Windows.

Chapter 10 — Other Programming Topics

Here is an outline of the resulting Macintosh GBL oadWave dialog routine.

int
GBLoadWaveDialog (void) // Macintosh

{

DialogStorage ds;

InitDialogStorage (&ds) ;
theDialog = GetXOPDialog (DIALOG TEMPLATE 1ID) ;
InitDialogSettings (theDialog, &ds) ;

do {

DoXOPDialog (&itemHit) ;
switch(itemHit)
HandleItemHit (theDialog, itemHit, &ds);

ShowCmd (theDialog, &ds, cmd) ;
} while (itemHit<DOIT BUTTON || itemHit>TOCLIP BUTTON) ;

ShutdownDialogSettings (theDialog, &ds) ;
DisposeDialogStorage (&ds) ;

DisposeXOPDialog (theDialog) ;

return itemHit==CANCEL BUTTON ? -1 : 0;

273

Chapter 10 — Other Programming Topics

Here is an outline of the resulting Windows GBL oadWave dialog routine.

static BOOL CALLBACK
DialogProc (HWND theDialog, UINT msgCode, WPARAM wParam, LPARAM lParam)

{

static DialogStoragePtr dsp;

itemID = LOWORD (wParam) ; // Identifies the item hit.
switch (msgCode) {
case WM_INITDIALOG:

dsp = (DialogStoragePtr)lParam;
InitDialogSettings (theDialog, dsp) ;
break;

case WM_COMMAND:
switch(itemID) ({

case DOIT_ BUTTON:

case TOCMD_ BUTTON:

case TOCLIP_ BUTTON:

case CANCEL_BUTTON:
HandleItemHit (theDialog, itemID, dsp);
ShutdownDialogSettings (theDialog, dsp) ;
EndDialog (theDialog, itemlD) ;
break;

default:
HandleItemHit (theDialog, itemID, dsp);
ShowCmd (theDialog, dsp, cmd) ;
break;

}

break;

!
int
GBLoadWaveDialog (void) // Windows

{

DialogStorage ds;
int result;

if (result = InitDialogStorage (&ds))
return result;

result = DialogBoxParam(. . . , DialogProc, (LPARAM)&ds) ;
DisposeDialogStorage (&ds) ;

if (result != CANCEL BUTTON)
return O;

return -1; // Cancel.

}

The code in VDTDiaog.c uses the same structure and the same platform-independent routines.

274

Chapter 10 — Other Programming Topics

Cross-Platform Dialog Popup Menus

The XOP Toolkit provides cross-platform dialog popup menu support. On Macintosh, popup
menus is implemented using the Macintosh menus. On Windows, popup menus are implemented
using combo boxes.

The GBLoadWaveDialog.c fileillustrates how to use dialog popup menu X OPSupport routines.
The InitDial ogSettings routine calls InitPopMenus. Y ou must call InitPopMenus when you
initialize adialog, before calling any other dialog popup menu routines.

Next, InitDial ogSettings calls InitDialogPopups. InitDial ogPopups calls CreatePopMenu once for
each popup menu in the dialog. On Macintosh, CreatePopMenu creates a new menu. On all
platforms, CreatePopMenu sets the initial contents of the popup menu and sets the initial
selection.

The HandleltemHit routine shows how to respond to a click on a popup menu. HandleltemHit
calls GetPopMenu to get the new selection. Other parts of the code also call GetPopMenu
whenever they need to know what is selected.

When the user dismisses the dialog, the ShutdownDial ogSettings routine calls KillPopMenus.
This balances the InitPopM enus routine. Also, on Macintosh, it disposes the menus created by
CreatePopMenu. After calling KillPopMenus, you must not call any further dialog popup menu
support routines.

Macintosh Popup Menus

On Macintosh adialog popup menu item is defined as a Control in the DITL resource. There
must be a corresponding CNTL resource. Your CNTL resources should use resource IDs in the
range 1100 to 1199. Make sure that the bounds rectangle in the CNTL resource matches the
bounds rectangle for the corresponding dialog item in the DITL resource.

The CNTL resource fields are nominally called initial value, visibility, maximum value and
minimum value. However, when used for a popup menu, they really mean something else. The
initial value field really stores something called the "title constant”. The maximum field really
stores the width of thetitle in pixels. We use O for these because we create an explicit title item.
The minimum field really storesa MENU resource ID. This kludge is more or less explained in
Apple's Control Manager documentation.

Y ou must specify -12345 as the MENU resource ID. This prevents the Mac OS Control Manager
from attempting to create a menu from aresource. The menu is created when you call the
CreatePopMenu X OPSupport routine and is disposed when you call DisposeX OPDialog.

Make sure to set the bounds field of the CNTL resource to the same coordinates as the
corresponding iteminthe DITL.

275

Chapter 10 — Other Programming Topics

Windows Popup Menus

The XOP Toolkit implements popup menus on Windows using combo boxes. Combo boxes do
not support disabling of items. In applications where you would normally disable a popup menu
item on Macintosh, to indicate that the item is not consistent with other dialog selections, you
must find an alternative approach. One approach isto allow the user to select an illegal item and
then to clearly indicate that the selection isillegal. Another approach is to remove the item from
the popup menu when it is not available and to add it back when it is available.

For acompletelist of dialog popup menu support routines, see Dialog Popup Menus on page
405.

Creating an Igor-Style Dialog

If your XOP adds a command line operation, you may want to add an Igor-style dialog. In most
cases, adding the dialog will be harder than adding the operation itself.

An Igor-style dialog has certain standard controls, namely the Do It, To Cmd, To Clip, Help and
Cancel buttons. It may also have lists of waves or other objects, popup menus and standard
controls like text items, radio buttons and checkboxes. In an Igor-style dialog, when the user
types and clicks, the dialog generates a command which is displayed in acommand box asit is
generated.

The GBL oadWave sample XOP implements afairly elaborate Igor-style dialog and can serve asa
starting point.

The basic structure of the code to create an Igor-style dialog is as follows:

Create a dialog window
Preset all of the controls
Try to restore the controls to their previous state

do
Find what control was touched and respond appropriately
Generate and display the command based on state of controls
until (Do It or To Cmd or To Clip or Cancel)

if (not Cancel)
Put the command in Igor's command buffer

Save the state of the dialog controls
Dispose dialog window

The GBLoadWave sample X OP shows how to implement each of these steps, including saving
and restoring the dialog’ s settings and creating and displaying the command generated by the
dialog.

276

Chapter 10 — Other Programming Topics

In Igor-style dialogs, the first seven items are standard:

#define DOIT BUTTON 1
#define CANCEL BUTTON 2
#define TOCMD BUTTON 3
#define TOCLIP_BUTTON 4
#define CMD BOX 5
#define HELP BUTTON 6
#define TITLE 7

Asthe user types and clicksin the dialog, the X OP displays the command being generated in the
command box, using the DisplayDialogCmd X OPSupport routine

When the user clicks Do It, To Cmd, or To Clip, the XOP calls the FinishDialogCmd
XOPSupport routine, which does the appropriate thing with the command generated by the
dialog.

When the user clicks the Help button, the dialog calls XOPDisplayHelpTopic. XOPDisplayHel p-
Topic displays the specified topic in the Igor help file associated with the XOP. For details on
creating an Igor help file, see Chapter 11.

Thetitle item is used on Macintosh but not on Windows, where the title appears in the window
caption. It is also possible to display thetitle in the Macintosh window frame rather than as a
dialog item if you use the right dialog procedure ID in your DLOG resource (movableDBoxProc
instead of dBoxProc).

The XOPSupport routines include extensive support for popup menusin dialogs. The
GBLoadWaveDialog.c fileillustrates shows how to use a popup menu to display alist of Igor
symbolic paths.

277

Chapter 10 — Other Programming Topics

278

Adding Version Resources

If you plan to distribute your XOP to other people, it isagood ideato add version resources. The
only use for the version resources is to identify your XOP to a person doing a Get Info in the
Macintosh Finder or viewing properties in the Windows desktop. All of the sample XOPs have
Version resources.

Macintosh Version Resources

Y ou create Macintosh version resources by editing your XOP's .r file or using ResEdit. The ‘vers,
1" resource identifies your XOP’ s version number. Y ou can use any version number that you like.
The'vers, 2' resource identifies the version of Igor with which your XOP isintended to run.

Hereis an example:

resource 'vers' (1) { // Version of XOP
0x01, 0x00, release, 0x00, O, // Version bytes and country code
lll.OOIII

"1.00, © 2004 WaveMetrics, Inc., all rights reserved."

}i

resource 'vers' (2) { // Version of Igor
0x05, 0x00, release, 0x00, O, // Version bytes and country code
IIS.OOIII

"(for Igor Pro 5.00 or later)"

¥

Windows Version Resources

Y ou create aversion resource using the Visual C++ or CodeWarrior resource editor. The editor
stores the resource in your XOP's main .rc file.

Chapter 10 — Other Programming Topics

Structure Alignment

Structure alignment controls whether fields in structures are aligned on two, four or eight-byte
boundaries and whether padding between fields is used to achieve this aignment. The C and C++
languages do not define structure alignment so it is compiler-dependent.

There are two waysto set structure alignment. First, you can use a project setting to set the
project-default structure alignment. Second, you can use pragma statements when defining
specific structures to override the default alignment.

Shared Structure Alignment

Structure alignment is critical when an executable passes a structure to a separately-compiled
executable, such as when Igor callsan XOP or vice versa. If they don’t agree on structure
alignment, they can not correctly access structure fields. This can cause bizarre crashes that are
difficult to debug.

Agreement is needed only for structures passed between separately-compiled executables, such as
Igor and an XOP. We call these “shared” structures.

In the XOP Toolkit, shared structures are defined with two-byte alignment. Thisincludes
structures defined in XOPSupport header files aswell as structures defined in the X OP itself,
namely the structures used to pass parameters to an XOP' s external operations and functions.
Two-byte alignment is alegacy from Igor’s early days when it was the Macintosh standard
alignment.

XOPSupport structures are defined in XOPSupport header files such as XOP.h and 1gorXOP.h.
These files contain statements to insure two-byte alignment. For example:

#include “XOPStructureAlignmentTwoByte.h”
<Structures defined heres

#include “XOPStructureAlignmentReset.h”

The #included files contain the pragma statement to set the structure alignment. The necessary
pragma statements are different for different compilers. The included files take care of those
compiler differences.

In addition to the shared structures defined in XOPSupport header files, individual X OPs must
a so define shared structures for external operation and function parameters which they receive
from Igor. Such shared parameter structures must be two-byte aligned and so must use the

279

Chapter 10 — Other Programming Topics

280

#include statements shown above. Thus you will see these statementsin al of the sasmple XOP
projects.

Failure to use two-byte alignment for shared structures will cause crashes that are sometimes
difficult to diagnose. Therefore, although the use of pragma statementsis sufficient if they are
aways used when needed, in the sample CodeWarrior and Visual C++ XOPs, we have usually
specified two-byte alignment via the project settings dialogs. This tells the compiler to use two-
byte alignment by default and saves the X OP programmer who forgets to use the pragma
statements.We did not do thisin the sample Xcode projects because X code does not provide a
user-interface for the structure alignment setting.

If you are an advanced programmer you may want to set the project default differently. To make
sure that thisis safe, follow these steps:

1. Verify that any external parameter block structuresin your XOP are set to two-byte
alignment using #include statements.

2. Usethe project settings dialog to set the default structure alignment to the normal setting
(usually 8 bytes).

3. Recompile your XOP and test it.

File Structure Alignment

Y ou also need to be careful about structure alignment if you store a structure in afile. Once you
define the file structure, you must use the same structure and alignment in all future versions of
your XOP.

If your XOP isto run cross-platform, you must use the same structure and alignment on all
platforms.

WaveMetrics uses two-byte alignment for structures stored on disk.

Chapter 10 — Other Programming Topics

Using Igor Structures as Parameters

Igor Pro 5.03 added the ability to pass a pointer to a structure as a parameter to an external
operation or external function. Thisisatechnique for advanced programmers.

If you use this feature, your XOP will require Igor Pro 5.03 or later. Y ou should put atest in your
main function to make sure that you are running with a recent enough version. See Checking
Igor’sVersion on page 140 for details.

Structure parameters are passed as pointers to structures. These pointers always belong to Igor.
Y ou must never dispose or resize a structure pointer but you may read and write itsfields.

Aninstance of an Igor structure can be created only in a user-defined function and exists only
while that function is running. Therefore, when a structure must be passed to an external
operation or function, the operation or function must be called from a user-defined function, not
from the command line or from a macro. An external operation that has an optional structure
parameter can be called from the command line or from amacro if the optional structure
parameter is not used.

The pointer for a structure parameter can be NULL. Thiswould happen in an external operation
or function if the user supplies* as the parameter or in the event of an internal error in Igor.
Therefore you must always test a structure parameter to make sureit is non-NULL before using
it.

If you receive aNULL structure pointer as a parameter and the parameter is required, return an
EXPECTED_STRUCT error code. Otherwise, interpret thisto mean that the user wants default
behavior.

Y ou must make sure that the definition of the structure in Igor and in the XOP are consistent.
Otherwise acrash islikely to occur.

For examples, see External Operation Structure Parameter Example on page 169 and
External Function Structure Parameter Example on page 196.

281

Chapter 10 — Other Programming Topics

Structure Fields

This table shows the correspondence between Igor structure field types and C structure field types.

Igor Field Type C Field Type Notes

Variable double

Variable/C double[2]

String Handle See StringsIn Structures on page 283.
WAVE waveHndl Always check for NULL.

NVAR NVARRec Use with GEtINVAR and SetNVAR.
SVAR SVARRec Use with GetSVAR and SetSVAR.
FUNCREF void* Use with GetFunctionl nfoFromFuncRef.
STRUCT struct Embedded substructure.

char char

uchar unsigned char

int16 short

uint16 unsigned short

int32 long

uint32 unsigned long

float float

double double

282

If the calling Igor procedure attempts to access a non-existent wave, the corresponding waveHndl
structure field will be NULL. Thus the external function must always check for NULL before

using awaveHnd! field.

If the calling Igor procedure attempts to access a non-existent global numeric variable or global
string variable, the GEtNVAR, SetNVAR, GetSVAR and SetSVAR XOPSupport routines will

return an appropriate error code.

Chapter 10 — Other Programming Topics

The FUNCREF field type can be used to call an Igor user-defined function or an external function
that is referenced by afield in an Igor Pro structure. See Calling User-Defined and External
Functions on page 285 for details.

Strings In Structures

Stringsin Igor structures behave just like string parameters passed directly to an external
operation implemented with Operation Handler. They also behave like string parametes passed
directly to an external function with one important exception. In the case of a string passed as a
simple external function string parameter, the XOP owns the string handle and must disposeit. In
the case of a string field in a structure, Igor owns the handle and the external function must not
disposeit.

A string field handle can be NULL. The XOP must check for NULL before using the field.

Aswith simple string parameters, strings referenced by structure fields are stored in plain
Macintosh-style handles, even when running on Windows. The handle contains the string’ s text,
with neither a count byte nor atrailing null byte. Use GetHandleSize to find the number of
charactersin the string. To use C string functions on this text you need to copy it to alocal buffer
and null-terminate (using GetCStringFromHandle) it or add a null terminator to the handle and
lock the handle. In the later case, you must remove the null terminator and unlock the handle
when you are finished using it as a C string.

NVARs and SVARS In Structures

This exampleillustrates handling Igor structures containing NV ARs, which reference global
numeric variables, and SVARswhich reference global string variables.

#include "XOPStructureAlignmentTwoByte.h" // Set struct alignment

#define kF2StructureVersion 1000 // 1000 means 1.000.

struct F2Struct { // Format of structure parameter.
unsigned long version;
NVARRec nv; // Corresponds to NVAR field in Igor structure.
SVARRec sv; // Corresponds to SVAR field in Igor structure.

}i

typedef struct F2Struct F2Struct;

struct F2Param { // Parameter structure.
F2Struct* sp;
double result;

}i

typedef struct F2Param F2Param;

#include "XOPStructureAlignmentReset.h"

283

Chapter 10 — Other Programming Topics

284

int

XTestF2Struct (struct F2Param¥*

{

struct F2Struct*
NVARRec* nvp;
double realPart,
SVARRec* svp;
Handle igorStrH,
char buffer[256];
int numType,

ourStrH NULL;

Sp = p->8p;

if (sp == NULL)
err
goto done;

(sp->version !
err
goto done;

}

nvp = &sSp->nv;

if (err = GetNVAR (nvp,
goto done;

realPart *= 2;

if (err = SetNVAR (nvp,
goto done;

SVp = &Sp->8V;

if (err = GetSVAR(svp,

goto done;
if
goto done;

err=

(err = GetCStringFromHandle (igorStrH, buffer,

p)
sSpi
imagPart;
ourStrH;

0;

{

EXPECT_ STRUCT;

= 1000)

{

INCOMPATIBLE STRUCT VERSION;

// Handle the NVAR.
&realPart, &imagPart, &numType))
// Probably referencing non-existent global.

imagPart *= 2;

&realPart, &imagPart))

// Handle the SVAR.
&igorStrH)) // igorStrH can be NULL. Igor owns it.
// Probably referencing non-existent global.
sizeof (buffer)-1))
// String too long.

ourStrH = NewHandle (0L) ; // We own this handle.
if (ourStrH == NULL) {
err = NOMEM;

goto done;
!
if
goto done;
(err
goto done;

if =

done:

if (ourStrH

(err = PutCStringInHandle ("Hello",

SetSVAR (svp,

ourStrH))

ourStrH))

!= NULL)

DisposeHandle (ourStrH) ;

p->result
return err;

err;

Chapter 10 — Other Programming Topics

Calling User-Defined and External Functions

Asof Igor Pro 5, an XOP can call an Igor Pro user-defined function or an external function
defined in another XOP. Y ou might want to do this, for example, to implement your own user-
defined curve fitting algorithm. Thisis an advanced feature that most X OP programmers will not
need.

There are two waysto identify the function to be called: by the function name or using a
FUNCREF field in an Igor Pro structure. The ability to call afunction by name was added in Igor
Pro 5.00. The ability to call afunction referenced by a FUNCREF field was added in Igor Pro
5.03. If you use these features, you must check the version of Igor with which you are running.
See Checking Igor’s Version on page 140 for details.

From an XOP s point of view, an Igor user-defined function and an external function defined in
another XOP appear to be the same.

There are several difficultiesinvolved in calling a user-defined function:
* You must make sure Igor’s procedures are in a compiled state.
* You need some way to refer to the function that Igor and your X OP agree upon.

* You must make sure that the function’ s parameters and return type are appropriate for your
XOP' s purposes.

The XOPSupport GetFunctionlnfo, GetFunctionl nfoFromFuncRef, CheckFunctionForm and
CallFunction routines work together with your XOP to address these difficulties. The details of
each of these routines are described in Chapter 13.

GetFunctionlnfo takes a function name, which you might have received as a parameter to your
external operation, and returns information about the function’s compilation state, its parameters
and its return type. At thistime you can call CheckFunctionForm to make sure that the function is
appropriate for your purposes.

GetFunctionlnfoFromFuncRef works the same as GetFunctionlnfo except that, instead of passing
the name of afunction, you pass the contents of a FUNCREF field in an Igor Pro structure that
you have received as a parameter.

Once you have obtained the function information, the rest of the process is the same, whether you
used GetFunctionlnfo or GetFunctionlnfoFromFuncRef.

Since the function may be recompiled or deleted at any time, you must call CheckFunctionForm
again shortly before you attempt to call the function.

Once you have successfully called GetFunctioninfo or GetFunctionlnfoFromFuncRef and
CheckFunctionForm, you can call CallFunction to call the function.

285

Chapter 10 — Other Programming Topics

Example of Calling a User-Defined or External Function

In this example, we have written our own curve fitting routine, analogous to Igor's FuncFit
operation, as an external operation. We want to call a user or external function from our external
operation.

The function that we want to call has this form:
Function FitFunc(w, x)

Wave w
Variable x

To simplify the example, we assume that we known the name of the function that we want to
execute.

// Define the parameter structure.
// These are parameters we will pass to user or external function.

#include "XOPStructureAlignmentTwoByte.h" // Set structure alignment.

struct OurParams { // Used to pass parameters to the function.
waveHndl waveH; // For the first function parameter.
double x; // For the second function parameter.

typedef struct OurParams OurParams;
typedef struct OurParams* OurParamsPtr;

#include "XOPStructureAlignmentReset.h" // Reset structure alignment.

286

Chapter 10 — Other Programming Topics

int
DoOurOperation (waveHndl coefsWaveH)
{
FunctionInfo fi;
OurParams parameters;
int badParameterNumber;
int requiredParameterTypes[2];
double result;
int i;
double wvalues|[5];
int err;

// Make sure the function exists and get information about it.
if (err = GetFunctionInfo("TestFitFunc", &fi))
return err;

// Make sure the function has the right form.
requiredParameterTypes [0] =NT_FP64; // First parameter is numeric
requiredParameterTypes [1] =WAVE TYPE;// Second parameter is a numeric wave.
if (err = CheckFunctionForm(&fi, 2, requiredParameterTypes,
&badParameterNumber, NT FP64))
return err;

// We have a valid function. Let's call it.

parameters.x = 0;
parameters.waveH = coefsWaveH;
for (i=0; 1i<5; i+=1) {
parameters.x = 1i;
if (err = CallFunction(&fi, (void*)¶meters, &result))
return err;
values[i] = result;

}

return 0;

287

288

Chapter 10 — Other Programming Topics

Macintosh Programming Issues

This section discusses certain issues that arise when programming an XOP for Macintosh. The
vast mgjority of XOP programmers will not run into these issues.

Don’t Initialize Macintosh Toolbox Managers

An XOP must not initialize any Macintosh Toolbox managers. Igor initializes them and, asfar as
the toolbox is concerned, the XOP is part of Igor.

Restrictions on Opening Resource Forks

This section discusses a problem that does not affect most XOPs. It does affect XOPs that directly
or indirectly (through system or library calls) access resources.

Prior to Carbon, Igor did some sleight-of-hand to make sure that the resourcesin all XOPs were
hidden from Igor and from all other X OPs. With Carbon, thetrick is no longer feasible. All XOP
resource forks are now visible to the Resource Manager all of the time. This has the potential to
cause problems.

Before Igor sends a message to your XOP's X OPEntry routine, it sets the current resource fork to
your XOP's resource fork. However, for speed reasons, it does not do this when calling a direct
external operations and function. Also, you may use Macintosh programming techniques, such as
Carbon Events, which result in your code being called by the operating system, not by Igor. In
this case, you can not be sure what resource fork is current. This means that you must take great
care when accessing resources to make sure that you access only your own resources. Here are
guidelines for doing this:

1. Before calling any function that directly or indirectly accesses resources, call UseResFileto
make sure that the file in which the resource resides is the current resource file. When you are
finished, set the current resource file back to what it was. For example:

int saveResFile = CurResFile() ;

UseResFile (XOPRefNum()) ; // Set current to XOP resource fork.
<Access resources>

UseResFile (saveResFile) ;

2. Don't cal routines that search multiple resource forks. For example, use Get1Resource, not
GetResource. Use Get1lNamedResource, not GetNamedResource.

3. There are some Mac OS routines which do not give you the option of restricting the search to
one resource fork. These include GetMenu and GetlndString. This does not cause a problem
if you set the current resource fork before calling these routines and if the resource is found.
However, if the resource is absent from the resource fork that you intend to search, these
routines might find the resource in another resource fork.

creper L1

Providing Help

OVEIVIBIW ...ttt be st st et e e e seenesbesaentenee e eneenens 291
[QOF Pro HEIP FilE...eeeeee ettt sttt 292
Help for External Operations and FUNCLIONS...........ccoereeniinenie e 292
Macintosh BallOON HEIP........coiiiiiecce e 295
Balloon Help For Macintosh XOP Menu [temS.........ccccoevvieevevesiese e 296
Status Line Help For Windows XOP Menu [Items..........ccceovvreneneneiniencneens 297

Status Line Help For Items Added To Igor Menus...........c.ccoeeeveieeienennns 297

Status Line Help FOr XOP MENUS........ccccoiiieeecieceetece et 297
Context-Sensitive Help For Windows XOP Dial0gsSccccevveeveveeeeniesieenenns 300
Help For XOP Dialogs and WindOWS............coiererereieneneneseseeseeeeeeesiee 300

289

Chapter 11 — Providing Help

290

Chapter 11 — Providing Help

Overview

If your XOP will be used by other people, you should provide help. This chapter discusses
providing help in one of the following ways:

* lgor Pro helpfile

» Macintosh balloon help

* Windows status line help

* Windows context sensitive help

The most important of these isthe Igor Pro help file.

291

Chapter 11 — Providing Help

292

Igor Pro Help File

If your XOP isto be used by people other than you, you should create an Igor Pro help file. Igor
uses this help fileto display help in the Igor Help Browser Command Help tab and to provide
templatesin Igor procedure windows. Y ou can also ask Igor to display this file when the user
clicks the Help button in your dialog or window. The user can open the help file at any time by
double-clicking it or using the File->Open File->Help File menu item.

Igor Pro help files work on both Macintosh and Windows. Y ou can edit the file on one platform
and use it on both. The help file name should have a".ihf" extension and on Windowsit is
required. After editing the file as an Igor formatted notebook, the next time you open it asa help
file, Igor will “compile” it.

In lgor Pro 4, you must compile your help file on Macintosh and again on Windows. On
M acintosh the help compiler output is stored in the resource fork of the file. On Windows, it is
stored in an additional ".ihf.igr" file.

In Igor Pro 5 the help compiler output is stored in the help file itself. Y ou can compile your help
file on either platform and it will work on both. No ".ihf.igr" file is needed. Igor Pro 5 can use
help files compiled by Igor Pro 4 but not vice versa.

Y our help file should include an overview, examples of using your XOP, and a description of
each operation and function that your XOP addsto Igor.

It isusually best to start with a help file for one of the sample XOPs and modify it to suit your
purposes. For details on creating an Igor Pro help file, see the Igor Pro User’s Manual.

When Igor needsto find an XOP' s helpfile, to display help in the Help Browser, for example, it
looksin the folder containing the executable X OP itself. The sample XOPs use afolder
organization, described in Chapter 3, which puts the executable X OP in a development system-
specific subfolder. The help fileis at the top of the sample XOP folder hierarchy, usually one
level up from the executable XOP. With Igor Pro 5.02 or later, you can make Igor find the help
file by putting an alias (Macintosh) or shortcut (Windows) for it in the same folder asthe
executable XOP. The alias or shortcut must have the exact same hame as the help file itself.

Help for External Operations and Functions

Igor Pro provides help for built-in operations and functions via the Command Help tab of the Igor
Help Browser and also viathe Templates popup menu in the procedure window. Y our XOP can
supply this kind of help for its own operations and functions.

Chapter 11 — Providing Help

When Igor Pro builds the list in the Command Help tab and when it builds the Templates popup
menu, it automatically includes any external operations declared in your XOP' s XOPC resource
and any external functions declared in your XOP' s XOPF resource.

When the user chooses an external operation or function that your XOP provides, Igor Pro looks
in the folder containing the executable XOP for your XOP's help file. If it findsit, it looksin the
help file for a subtopic that matches the operation or function. If it finds this, it displays the help
in the Help Browser or displays the template in the procedure window.

Igor Pro 5 looks for an XOP help file, in the same folder as the XOP file itself, with the same
name as the XOP file but with " Help.ihf" appended. If the XOP file nameis
"GBLoadWave.xop", Igor will look for "GBLoadWave Help.ihf". Thisis what we cal the
"default help file name". In most case, the default name is fine so this technique will work.

Prior to Igor Pro 5, on Macintosh Igor looked for "GBLoadWave Help" without the extension. If
you must run with Igor Pro 4 on Macintosh, omit the extension. Thiswill also work with Igor Pro
5 on Macintosh.

Y ou may want to override the default help file name. For example, you might have an XOP
named "GBL oadWave Release" and another X OP hamed "GBL oadWave Debug", and you want
both XOPs to use asingle help file named "GBLoadWave Help.ihf". To override the default help
file name, you must put a STR# 1101 resource in your XOP's resource fork. Igor takesitem
number 3in thisresource, if it exists, asthe help file name. Here is an example from
GBLoadWave.

// Macintosh, in GBLoadWave.r.
resource 'STR#' (1101) { // Misc strings that Igor looks for.

ll_lll,

"GBLoadWave Help", // Name of XOP's help file.

}
¥

// Windows, GBLoadWaveWinCustom.rc.

1101 STR# // Misc strings that Igor looks for.
BEGIN

"—1\0" ,

n___\on ,

"GBLoadWave Help\0", // Name of XOP's help file.

"\o" // 0 required to terminate the resource.
END

293

Chapter 11 — Providing Help

The first two itemsin the STR# 1101 resource are not used by modern XOPs. The first item must
be-1. It isthe third item that defines the custom XOP help file name. Note that the ".ihf"
extension is not included in the resource string but isincluded in the help file name.

If Igor finds the help file using your custom help file name from STR# 1101 or the default help
file name, it then looks in the help file for a subtopic whose name is the same as the name of the
operation or function for which the user has requested help. If it finds such a subtopic, it displays
the subtopic text in the dialog. Note that subtopics must be governed by a ruler whose name is
"Subtopic" or starts with the letters " Subtopic”. The best way to create your help file isto start
with aWaveMetrics help file and modify it.

294

Chapter 11 — Providing Help

Macintosh Balloon Help

Balloon help isaMac OS 9 technology. As of Carbon and Mac OS X, Apple has dropped balloon
help in favor of “help tags’. Because WaveMetrics had spent countless programmer-hours
creating balloon help for the hundreds of menu items and thousands of dialog itemsin Igor, we
wrote code that takes balloon help resources for menus and dialogs and displays their contents.

In Igor Pro 4, balloon help resource information is displayed in the Igor Tips windoid. In Igor Pro
5, itisdisplayed in help tags. For reasons that are not clear to us, menu help tags do not work
under Mac OS 9 but do work under Mac OS X. In both versions, the user turns balloon help on by
choosing Show Igor Tips from the Help menu.

For technical reasons, extending this WaveMetrics balloon help support to XOPsis not feasible,
except in avery limited fashion, asthistable illustrates:

Item Supported by Igor Pro4 | Supported by Igor Pro5
Single menu items Yes On Mac OS X only
(added by XMI1 resource)

XOP main menus Yes For CFM XOPs only
(added by XMN1 resource)

XOP submenus Yes For CFM XOPs only
(added by XSM 1 resource)

Didog items Yes No

Because of the limited and diminishing support for balloon help, we no longer recommend that
XOP programmers spend time to create balloon help resources. Advanced programmers may be
ableto use Apple' s help tags to fill this gap.

This manual documents only balloon help for single Macintosh menu items. If you want to
implement balloon help for the main menu or submenu of your CFM XOP, see Chapter 11 in the
XOP Toolkit 3.1 manual which isincluded on the XOP Toolkit CD ROM or contact
WaveMetrics support to receive the XOP Toolkit 3.1 manual in PDF form.

If you create your XOP as a Mach-O binary and if you have hmnu or hdlg resourcesin your .r
file, your .r filewill not compile. Thisis because the Carbon framework which supplies header
filesin Mach-O projects does not include Balloons.r, the balloon help resource definition file.
The solution isto remove or ifdef the hmnu or hdlg resources.

295

Chapter 11 — Providing Help

Balloon Help For Macintosh XOP Menu ltems

As described in Chapter 8, Adding M enus and Menu Items, you can put any number of menu
itemsin built-in Igor menus by using an XM11 1100 resource. Here is how you can provide
balloon help strings.

For each menu item that you add to a built-in Igor Pro menu you can supply a corresponding
STR# resource to contain four help strings for that one menu item. The resource ID of the STR#
resource isnot critical but, by convention, you should start these balloon string resources from
ID=1110.

This example comes from the WindowXOPL.r file used in the WindowX OP1 X OP.

// Balloon help for the "WindowXOP1l" item
resource 'STR#' (1110, "WindowXOP1") {

{

/* [1] (used when menu item is enabled) */
"WindowXOP1l is a sample XOP that adds a simple window to Igor.",

/* [2] (used when menu item is disabled) */
m, /* the item is never disabled */

/* [3] (used when menu item is checked) */
n, /* the item is never checked */

/* [4] (used when menu item is marked) */
", /* the item is never marked */

1
}i

Notice that the resource has a name and that it isidentical to the menu item that WindowXOP1
adds to Igor’ s built-in menu. Thisis how Igor Pro knows which STR# provides help for which
menu item.

If the WindowX OP1 XOP used an XM 1 resource to add a second or third menu item, we would
use STR# 1111 and STR# 1112 resources to provide balloon help for these items and we would
make sure that the names of these resources matched the the corresponding menu items.

Each STR# resource used to provide balloon help strings must contain exactly four strings. The
first string is used when the menu item is enabled. The second is used when it isdisabled. The
third is used when it is checked and the fourth is used when it is marked. “Marked” means that
you have added a symbol other than a checkmark. Thisisrarely used.

296

Chapter 11 — Providing Help

Status Line Help For Windows XOP Menu Items

Y ou can specify status line help strings for your XOP's menu items and menus. If your XOP adds
one or more menu items to built-in Igor Pro menus, you can use a STR# resource to provide
status line help for those items. If your XOP uses XMN1 resources to add main menu bar menus
or XSM1 resources to add submenus, you can use HMNU and MENUHELP resourcesto provide
balloon help for those menus. Here are the details.

Status Line Help For Items Added To Igor Menus

For each menu item that you add to a built-in Igor Pro menu you can supply a corresponding
STR# resource to contain two help strings for that one menu item. The resource ID for each STR#
resource must match the corresponding item number in the XM11 resource. For example, if your
XMI1 resource defines two menu items, then you need two STR# resources, one with ID 1 for the
first menu item and the other with ID 2 for the second menu item.

Y ou create the status line help strings by entering text in your XOP's WinCustom.rc file. The
following STR# resource from afictitious XOP illustrates the form of the status line help STR#
resource.

1 STR# // Status line help for first item in XMI1l resource.
BEGIN
// The first string is displayed when the menu item is enabled.
"Computes the average value of a wave.\0",

// The second string is displayed when the menu item is disabled.
"Not available because there are no waves.\0",

"\o" // Null required to terminate the resource.
END

Igor displays the first string when the user highlights your XOP's menu item and theitem is
enabled. The second string is displayed when the highlighted item is disabled.

Each string must be terminated with anull character (\0) and there must be a null string ("\0")
following the last help string.

If your XOP's menu item can never be disabled, use an empty string ("\0") as the second string.

Status Line Help For XOP Menus

If your XOP adds one or more main menus or submenusto Igor Pro, you can provide status line
help by including one or more HMNU resources in your XOP. lIgor uses the information in
HMNU resources to find MENUHEL P resources containing the status line strings for your
menus. Y ou enter the HMNU and MENUHELP resources in your XOP's WinCustom.rc file.

297

Chapter 11 — Providing Help

Here is an example of status line help strings for afictitious X OP that adds a menu containing
three menu items.

IDR _MENU1l HMNU DISCARDABLE // Status line help for menu.

BEGIN
4, // Number of strings in the menu, including the menu title.
0, // MENUHELP group. Always zero.

// Default help string resource number.
0,0,0L, // There is no default help string for this menu.

// Pointers to MENUHELP resources for each item in the menu.

1,1,0L, // Help for menu title is in MENUHELP resource 1.

1,2,0L, // Help for menu item 1 is in MENUHELP resource 2.

1,3,0L, // Help for menu item 2 is in MENUHELP resource 3.

1,4,0L // Help for menu item 3 is in MENUHELP resource 4.
END

1 MENUHELP DISCARDABLE // Status line string for menu title.
BEGIN

0L, // No WinHelp item.
1L, // This resource contains 1 string.
"The Pele XOP simulates soccer plays using Igor.\0",

END

2 MENUHELP DISCARDABLE // Status line string for menu item 1.
BEGIN

0L, // No WinHelp item.
1L, // This resource contains 1 string.
"Creates a new simulation.\0",

END

3 MENUHELP DISCARDABLE // Status line string for menu item 2.
BEGIN

0L, // No WinHelp item.

2L, // This resource contains 2 strings.

"Runs the simulation.\0",

"Not available because no simulation window is active.\O0",
END

4 MENUHELP DISCARDABLE // Status line string for menu item 3.
BEGIN

0L, // No WinHelp item.

2L, // This resource contains 2 strings.

"Deletes the active simulation.\O0",

"Not available because no simulation window is active.\O0",
END

298

Chapter 11 — Providing Help

The MENUHELP resource contains the actual status line help strings. The HMNU resourceisa
directory that Igor uses to associate items in a menu with MENUHELP resources. Thefirst linein
the HMNU resource is the number of stringsin the menu, counting the menu title and each menu
item as one string. The second line contains a placeholder which must be zero.

The remaining linesin the HMNU resource point to MENUHELP resources and consist of three
numbers. The first number is 1 if thereisa MENUHELP resource for the corresponding menu
item or O if not. The second number isthe MENUHELP resource ID or O if thereis none. The last
number is a placeholder and must be OL.

The next line in the HMNU resource defines a default MENUHELP resource. The default
resource, if present, will be used for menu items that have no associated item in the HMNU. The
next line in the HMNU specifies the MENUHELP resource for the menu title string. The
remaining lines specify the MENUHELP resource for each menu item. Y ou can add itemsto the
menu at runtime, but they will not have status line help.

Thefirst itemin aMENUHELP resource is atopic number for context-sensitive help. Thisis not
presently supported and must be OL.

The second number tells Igor how many strings follow. This should be 2 if the menu item can be
disabled and 1 if it can not be disabled. The rest of the resource consists of that number of strings.
Note that all strings in the MENUHEL P resource have aterminating null character.

299

Chapter 11 — Providing Help

Context-Sensitive Help For Windows XOP Dialogs

Igor dialogs support context-sensitive help accessed via the question-mark icon. The help text is
stored in aWinHelp file prepared using the Microsoft Help Workshop. At runtime, Igor calls the
WinHelp function when the user clicks the question-mark icon. If your XOP adds a dialog to
Igor, you can add context-sensitive dialog help in the same manner. This does not require any
coordination with Igor. Y ou implement this kind of help by calling the Windows APl WinHelp
function in response to aWM_CONTEXTMENU message that the Windows OS sends to your
dialog procedure.

Help For XOP Dialogs and Windows

Balloon help on Macintosh and context-sensitive help on Windows provide help for a specific
dialog item or window icon. The user also may need help that explains the purpose of the dialog
or window and gives general help for using it. To provide this kind of help, add a Help button to
your dialog or window. When the user clicks the button, call the XOPDisplayHelpTopic
XOPSupport routine. XOPDisplayHelpTopic displays atopic that you specify from your XOP
help file.

300

Debugging

OVEIVIBIW ..ttt sttt s e et be s e e tesaeebesbeensenbeereeneene 303
Programming ProblemS...........ccv e 303
Excessive Use of Global Variables...........cccevvveeceniniieene e 303
Uninitialized Variablescooi e 304
OVEIWIITING ATTAYS. . .iiteeiece ettt ettt sre et sne e resreenaenre s 305

OFf BY ONEEITOIS......otiiieeiceeeee ettt 306
Failure To Check Error COAES.......ccoviiienrieeiere et 306
Misconceptions ADOUL POINENS.........ccocvcieeien e 307
Using Memory Blocks That You Have Not Allocated.........cccceevvvvieeennee. 308
Using Memory Blocks That You Have Disposed.........cccccevvveeneneicenennee. 309
Disposing Memory Blocks More Than ONce........cccocveveeveevien e sensneenns 309
Failure to Dispose Memory BIOCKS........cccccveceveceeiecc e 310
Disposing Memory Blocks That Don’'t BElong to YOUcccccoeveeeeenienee. 311
Failureto Check Memory AllOCaLIONS..........cccceviieeieiieeee e 311
Dangling Pointer / Heap Scramble Problems ..o, 312
Dereferencing the Handle ..o 313
Dereferencing the Handle Without Using a Pointer Variable............. 314

Locking the BIOCK...........cooue et 315

Heap Fragmentation...........cccceeveiiieenese e 315

Be Careful About Unlocking @aBlocKcceeeiiineninenceee 316

Using MoveLockHandle............cccceeveriericecie e 317
Recommendations for Using Handles...........cccovevvveecevececvececee, 317

Testing for Heap Scramble Problems ..., 317
Debugging TEChNIQUES........cceiiiiieierieeee et see e e 318
Recompiling YOUr XOP........cccooiiiiieieese et saeeeeesee e s e e 318
SymbOIIC DEDUGGING ..vnveveeieriesiesiesiesie sttt nee 318
Debugging USing XOPNOLICE........cccieiierrrieeieesieeeese e 319
Using Macsbug 0N MaC OS 9......cccvciievieseeree et 319

301

Chapter 12 — Debugging

302

L@ o T oL SRR 319
Avoiding Common PIfallS........ccce v 320
Check YOUr ProjeCt SEtUP.......ccceivieeerieitieie ettt nne s 320
Get the Message and Parameters from 1gorcceoveeeeneninenienesieeeenins 320
Understand the Difference Between a String in aHandle and a C String .. 321
Choose DistinCtive NaMES..........coiiiiriiiee e 322
Set the Menu ID for MENU RESOUICES.........cceoerieeeiiesieeeesesieesee e seeeeens 322
Watch OUt fOr RECUISIONccuiiieieie e 322
SrUCtUre ALIGNMENL.......ccee e e 322

Chapter 12 — Debugging

Overview

In this chapter we present tips and techniques learned through years of XOP programming that
may save you valuable time.

Y ou can reduce the amount of time that you spend debugging by using good programming
practices. These include

» Breaking your program up into appropriate modules

» Using clear and descriptive variable and function names

» Always checking for errors returned by functions that you call
» Keeping the use of global variables to a bare minimum

o Carefully proofreading your code immediately after writing it

The best time to find a bug is when you create it. When you write aroutine, take afew minutesto
carefully proofread it. Be on the lookout for the common errors listed below that can take hours to
find later if you don’t catch them early.

Most of the problems that people run into in writing X OPs are standard programming problems.
We discuss several of them in the next section. The middle part of the chapter discusses
debugging techniques. The chapter ends with a discussion of pitfalls that are specific to XOP
programming.

Programming Problems

Here are some of the common programming problems that you should be on the lookout for as
you proofread your code.

Excessive Use of Global Variables

Glaobal variables are bad because any routine in your program can change them and any routine
can depend on them. This can lead to complex and unexpected dependencies which in turn leads
to bugs. A given routine may change a global variable, having an unforeseen impact on another
routine that uses the global. This creates a bug that may manifest itself at unpredictable times.

By contrast, aroutine that accesses no global variables depends only on its inputs and can not
impact routines other than the one that called it. This makesit easy to verify that the routine
works properly and reduces the likelihood of unforeseen effects when you change the routine.

303

Chapter 12 — Debugging

304

Y ou can avoid using globals by passing all of the necessary information from your higher level
routines to you lower level routines using parameters. This does lead to routines with alot of
parameters but thisis a small price to pay for robustness.

It isalright to use global variables for things that you can set once at the beginning of your
program and then never need to change. For example, the XOPSupport routines use a global
variable, XOPRecHandleg, to store the handle that Igor uses to communicate with your XOP. This
global is set once when your XOP calls XOPInit and then is never changed. Because it is never
changed, it can’t introduce complex dependencies.

Uninitialized Variables

The use of uninitialized variables can be difficult to find. Often an uninitialized variable problem
shows up only if your code takes a certain execution path. Here is an example.

long numBytes;
double* dp;

if (<conditionls>)
numBytes = 100;
else
if (<condition2>)
numBytes = 200;

dp = NewPtr (numBytes) ; // Possible bug
<Fill block with datas>;

If neither <condition1> nor <condition2> is true, then numBytes will be uninitialized. This may
happen only in rare cases so your code may seem to run fine, but oncein awhileit crashes or
behaves erratically.

Even if numBytesis uninitialized, your code may run fine some times because numBytes just
happens to have avalue that is sufficient. This makes it even harder to find the problem because it
will be very intermittent.

If this bug is symptomatic, the symptom will most likely be a crash. However, the crash may
occur some time after this routine executes successfully. The reason is that this routine will
clobber the block of memory that falls after the block allocated by NewPtr. Y ou will not actually
crash until something triesto use the clobbered block.

To avoid this problem, proofread your code and pay specia attention to conditional code, making
surethat al variables areinitialized regardless of what path execution takes through the code.

Chapter 12 — Debugging

Overwriting Arrays

It is not too difficult to clobber data on the stack or in the heap by overwriting an array. Hereisan
example.

int

Test (char* inputName)

{

char name [MAX OBJ NAME+1];
Handle aHandle;

aHandle = NewHandle (100) ;
if (aHandle == NULL)
return NOMEM;
strcpy (name, inputName) ;
strcat (name, " N"); // Possible bug

}

This code will work fine as long as the inputName parameter is less than or equal to

MAX_OBJ NAME-2 characterslong. Thisislikely to be the case most of the time. Oncein a
while, it may be longer. Thiswill cause the strcat function to overwrite the name array. The effect
of thiswill depend on what follows the name array in the local stack frame.

With most compilers, the aHandle variable will follow the name array on the local stack. Thus,
this bug will clobber the aHandle variable. Thiswill most likely cause a crash when the aHandle
variable isused or when it is disposed. It could be worse though. It may corrupt the heap when
aHandleis used but not cause a crash until later, making it very difficult to track down.

Hereisavery insidious case in which the bug may be asymptomatic most of the time. Imagine
that the inputName parameter is MAX_OBJ NAME-1 characterslong. Then, the strcat function
will use just one more byte than is allocated for the name array. It will write the terminating null
character for the name variable in the first byte (the high byte on Macintosh) of the aHandle
variable. Since aHandle contains an address in the heap, this high byte will be zero if the address
isinthefirst 16 megabytes of the memory map. In this case, the bug will cause us to write a zero
byte on top of azero byte and it will be asymptomatic. However, if the addressis not in the first
16 megabytes of the memory map, the bug will write a zero on top of anon-zero byte and it will
be symptomatic.

To avoid this problem, proofread your code and pay special attention to array and string
operations, keeping in mind the possibility of overwriting. Read through the code assuming a
worst case scenario (e.g., inputName is aslong as it possibly could be).

305

Chapter 12 — Debugging

306

Off By One Errors

It isvery easy and common to do something one time too many or one time too few. For example.
int

RotateValuesLeft (float* values, int numValues)

{

float valueoO;
int i;

value0 = values[0];

for(i = 0; i < numValues; i++)
values[i] = values[i+1]; // Bug
values [numValues] = valueO; // Bug

}

We assume that values parameter points to an array of numValues floats. There are two problems
here. First, when i reaches its maximum value (numValues-1), valueg[i+1] accesses avaluethat is
past the end of the array. Second, and more destructive, the last statement clobbers whatever
happens to be stored after the values array. If the values array isin the heap, this may cause heap
corruption and a crash at some later time. If the values array is on the stack, it may or may not
cause a problem, depending on what is stored after the values array and how it is used.

To avoid this problem, proofread your code and pay specia attention to what happens the first
and last times through aloop. In this example, assume that numValues is some specific number
(3, for example) and work through the loop, paying specia attention to the last iteration. Also
verify that the last element of an array is being set and that no element beyond the last element is
being touched. Remember that, for an array of n elements, the first valid index is zero and the last
valid index isn-1.

Failure To Check Error Codes

Always check error codes returned from X OPSupport routines (and any other routines, for that
matter) and handle errors gracefully. Failure to check error codes can turn asimple probleminto a
devilish, irreproducible crash. Here is an example.

void
BadCode (void)
char* waveData;
long dims[MAX_DIMENSION_SIZES+1];

MemClear (dims, sizeof (dims)) ;

dims [ROWS] = 100;

dims [COLUMNS] = 100;

MDMakeWave (&waveH, "wave(O", NULL, dims, NT FP32, 1);
waveData = WaveData (waveH) ;

MemClear (waveData, 100*100*sizeof (float)) ;

Chapter 12 — Debugging

MDMakeWave returns an error code, but this routine ignoresit. If memory islow,
MDMakeWave may fail, return NOMEM as the error code, and leave waveH undefined. The
XOP will crash when it calls WaveData or MemClear. Since thiswill happen under low memory
conditions only, it will happen irreproducibly and the cause will be hard to find.

The code should be written like this.
int
GoodCode (void)

{

char* waveData;
long dims [MAX DIMENSION SIZES+1];
int err;

MemClear (dims, sizeof (dims)) ;

dims [ROWS] = 100;

dims [COLUMNS] = 100;

if (err = MDMakeWave (&waveH, "waveQO", NULL, dims, NT FP32, 1))
return err;

waveData = WaveData (waveH) ;

MemClear (waveData, 100*100*sizeof (float)) ;

return 0O;

}

Misconceptions About Pointers

People who program infrequently in C sometimes forget that a pointer has to point to something.
Here is an example of a common error.
void

Fl(long* 1lp)

{
}

void
F2 BAD (void)

{

*1p = 0;

long* 1pl;

F1(lpl); // Bug

}

Thevariable Ipl is apointer to along so the compiler is happy with this code. At runtime,
however, it may cause a crash. The problem isthat Ipl isan uninitialized variable. It contains a
random value that could point to anything in memory. When F2_BAD calls F1, F1 sets the value
pointed to by Ipl to zero. This sets arandom 32-bit section of memory to zero. It could be
completely asymptomatic or it could cause an immediate crash or it could cause a crash at alater
time. It could cause just about anything. It depends on what value happens to be stored in Ip1l.

307

308

Chapter 12 — Debugging

This example shows two correct waysto call F1.
void
F2_GOOD (void)

{
long longl;
long 1lpl;

Fl(&longl) ;
1pl = (long*)NewPtr (sizeof (long)) ;
if (1pl != NULL) {
Fl(1lpl);
DisposePtr ((char*)lpl) ;
}
}

In thefirst call to F1, we pass the address of the local variable longl which we have allocated on
the local stack. In the second call to F1, we pass the address of ablock of memory in the heap that
we have allocated using NewPtr.

To avoid problem with pointers, keep in mind that a pointer variable is just avariable that holds
the address of some place in memory and that you must set the value of the pointer to make it
point to memory that you have allocated before you use it. When you use a pointer, give some
thought to whether it points to some space on the local stack (&longl in F2_GOOQOD) or to some
space in the heap (Ipl in F2_GOOD). Thiswill help you avoid uninitialized pointers.

Using Memory Blocks That You Have Not Allocated

Thisisreally another case of an uninitialized variable. We make a special case of this because it
isacommon one. Here is an example.
int
Test (int v1, int v2)
{
Handle h;
long size;
int err = 0;

size = vl * v2;
if (size > 0) {
h = NewHandle (size) ;
<Do something with the handles;

}

DisposeHandle (h) ; // Possible bug
return err;

Chapter 12 — Debugging

We dispose the handle even in the case where size <= 0. In that case, we will not have allocated
the handle. This may or may not be symptomatic, depending on what val ue happens to be stored
in the handle and on what operating system we are running with. Some operating systems are
more tolerant than others of being passed a garbage handle.

This problem is usually alot more subtle than this example illustrates. The function may have all
sorts of conditionals, loops and switches and there may be certain paths of execution in which the
handle is not alocated. Often the best solution for thisis to use the handleitself as aflag
indicating whether or not it has been allocated. For example:

int

Test (int v1, int v2)

{

Handle h;
long size;
int err = 0;

h = NULL; // Flag that handle has not been allocated
size = vl * v2;
if (size > 0) {

h = NewHandle (size) ;

<Do something with the handles;

}

if (h != NULL) // Test flag
DisposeHandle (h) ;
return err;

}

Using Memory Blocks That You Have Disposed
Disposing Memory Blocks More Than Once

These problems are similar to the preceding one in that they generally occur in a complex
function that has many potential execution paths. They can also happen if you use global
variables. For example:

static Handle gH; // A global handle variable.

void
InitializePartl (void)

{

long size;

size = GetHandleSize (gH) ; // Uses global before it is initialized.
memset (**gH, 0, size);

}

309

Chapter 12 — Debugging

310

void
InitializePart2 (void)

{
}

void
main (void)

{

gH = NewHandle (100) ; // Initializes global handle.

InitializePartl () ;
InitializePart2() ;

}

The problem hereis confusion as to which routine is responsible for what. InitializePart1 assumes
that gH has already been allocated but it has not. So it is using a garbage handle with
unpredictable results but most likely a spectacular crash. Thisillustrates one of the fundamental
problems with global variables - it is difficult to remember when they are valid and what routines
have the right to use them.

To avoid this problem, pay specia attention to the allocation and deallocation of memory blocks
during coding and proofreading. Make sure that each is allocated once and disposed once. In
complex situations, initialize pointers and handlesto NULL and test for NULL before allocating
or disposing the memory to which they refer. After disposing, reset the pointer or handle to
NULL.

Failure to Dispose Memory Blocks

This problem is commonly called a“memory leak”. It occurs when you forget to deallocate a
block that you have allocated. Thisis usualy not fatal - it just consumes memory unnecessarily.

One way to avoid this problem is to proofread your code carefully, paying special attention to al
memory allocations.

Make sure that you know, when you receive a handle from Igor, whether the handle belongs to
Igor or isyoursto dispose. The XOP Toolkit documentation tells you which of these is the case.
For example, when your external function receives a handle containing a string parameter, the
handle belongs to you and you must dispose it. However, when your external operation receives a
string handle, it belongsto Igor and you must not dispose it. These issues are discussed in
Chapter 5 and Chapter 6.

Y ou can check for leaks by writing aloop that calls your XOP over and over while monitoring
memory usage. On Mac OS X, you can use Activity Monitor or MallocDebug. On Windows you
can use the Task Manager. Third-party leak detection tools are also available.

Keep in mind that some fluctuation in memory allocation is normal. For example, the first time
you call your external operation or function, Igor or your XOP may allocate some memory that

Chapter 12 — Debugging

needs to be allocated only once. But if memory usage continues to grow without explanation as
you call your XOP over and over then you may have aleak.

Disposing Memory Blocks That Don’t Belong to You

If you call GetWave to get awave handle or call FetchStrHandle to get a string variable handle,
you should never dispose that handle. It belongs to Igor and Igor will dispose it. The XOP Toolkit
documentation tells you when a handle belongs to Igor and when it is yours to dispose.

A similar situation arises with the Macintosh operating system. Some calls return a handle that
belongs to you and is yours to dispose (e.g., NewRgn). Other calls return a handle that belongs to
the system (e.g., GetGrayRgn).

Failure to Check Memory Allocations

If your XOP works fine most of the time but crashes under low memory conditions, it is possible
that you have failed to check memory allocations. Here is an example:

void
Test ()
{
Handle h;
h = NewHandle (10000) ;
memset (*h, 0, 10000) ; // Possible bug

}

Under sufficiently low memory, the NewHandle call will fail and h will contain 0. The memset
function will attempt to clear the first 20000 bytes starting at address 0 and will cause an access
violation exception. The routine should be rewritten like this:

int

Test ()

{
Handle h;
h = NewHandle (10000) ;
if (h == NULL)

return NOMEM;
memset (*h, 0, 10000) ;
return 0O;

}

Now that Test detects low memory, it will no longer cause an exception. However, the routine
that called Test will need to know that an error has occurred and must be able to stop whatever it
was doing and return an error aso. In fact, al of the routinesin the calling chain that led to Test
need to be able to cope with an error. For a program to be robust, it must be able to gracefully
back out of any operation in the event of an error.

311

312

Chapter 12 — Debugging

Virtual memory operating systems make it hard to test how your XOP behaves under low
memory conditions because memory allocation calls will amost never fail on such systems. In
other words, virtual memory may camaflouge bad programming practices. Good code still always
checks memory allocations and handles failed allocations gracefully.

Dangling Pointer / Heap Scramble Problems

A Macintosh handleis avariable that refers to ablock of memory in the heap. Unlike a pointer,
which points directly to ablock of memory, a handle points to the block indirectly. Specifically, it
points to a pointer, called a master pointer, to the block of memory.

Handle h; The Heap
h = NewHandle (100) ;

- Master pointer for h

The relocatable block of memory.

The benefit of thisisthat the memory manager can move the block to make room for other
blocks. The memory manager updates the master pointer so that it points to the new location of
the block. The handle still points to the master pointer and thusis still avalid reference to the
block.

Even Windows X OPs use Macintosh-style handles, asis explained in the section Data Sharing
on page 139. As of thiswriting, the Igor emulation of the Macintosh Memory Manager on
Windows never relocates blocks of memory. This means that heap scramble problems (described
below) can not occur on Windows.

It is hard to tell from Apple’s documentation, but it islikely that the Mac OS X memory manager
also does not rel ocate blocks of memory. That leaves just Mac OS 9 which definitely relocates
blocks of memory.

Y ou should write your code asif ablock referenced by a handle could be relocated. Thiswill
guarantee that your code runs on Mac OS 9 and continue to run if Apple changesthe Mac OS X
implementation or if WaveM etrics changes the Windows implementation.

Chapter 12 — Debugging

Dereferencing the Handle

To read or write data stored in a block of memory, we need a pointer to it. We obtain the pointer
by “dereferencing” the handle, using the C * operator.

Handle h; The Heap

h = NewHandle (100) ;

- Master pointer for h

char* p;
p = *h;

Dereference

The relocatable block of memory.

The pointer p now pointsto the block in memory and we can access the data using it.

The problem isthat, if the memory manager moves the block in the heap, then p will point to a
place in the heap where the data no longer resides. This place may now contain afree block or it
may contain the data associated with a different handle. If we use p to read data, we will read
garbage. If we use p to write data, we may trash a different handl€' s data, causing a problem that
will show up later.

Using a pointer obtained by dereferencing a handle after the block of data has been moved by the
memory manager is a " dangling pointer” bug or a“heap scramble” bug.

The memory manager will not move the block of memory capricioudly. It will only move the
block to make room for another block —when the program allocates a new handle or pointer or
tries to increase the size of an existing handle or pointer. Thus, you can avoid a dangling pointer
bug by not using a pointer to arelocatable block across a call that allocates memory. For
example:

Handle hil;
char* pil;
Handle h2;

hl NewHandle (100) ;

pl *hl; // Dereference hl to point to data.

memset (pl, 0, 100);

h2 NewHandle (100) ; // This allocates memory. pl is no longer valid.
pl *hl; // Dereference hl again to point to data.

313

Chapter 12 — Debugging

314

<Use pl to access datas;

We need to dereference hl the second time because the second call to NewHandle may cause the
memory manager to relocate the block of memory that hl refers to.

In this example, the need to dereference the handle again is obvious. Often, however, it is not
obvious at all. For example, you may dereference the handle and then call a subroutine that does
not allocate memory and thus does not scramble the heap. Then you use the pointer obtained by
dereferencing the handle. Everything works fine. Later, you change the subroutine so that now it
does allocate memory. Y ou are unlikely to remember that somewhere else in your program, you
have made the assumption that the subroutine does not scramble the heap. Now you have a heap
scramble bug. Because of this, the technique shown above should be used only with gresat care.

Dereferencing the Handle Without Using a Pointer Variable

To avoid having a dangling pointer, it is usually best to dereference the handle and use it in the
same statement. Thisis most applicable when the handle refers to a block that contains a
structure. For example, instead of:

StructHandle h; // A handle to a block containing some structure.
StructPtr p; // A pointer to a block containing the structure.
h = <Get Handle>;

p = *h; // Dereference.

p->fieldl = 123;

p->field2 = 321;

we use:

StructHandle h; // A handle to a block containing some structure.

h = <Get Handles>;
(*h) ->fieldl = 123;
(*h) ->field2 = 321;

The benefit of thisisthat thereis no pointer to dangle. However, thereis onetricky case in which
thiswill not save us:

StructHandle h; // A handle to a block containing some structure.
h = <Get Handles>;
(*h) ->fieldl = <Call a routine that scrambles the heap>; // Bug

This could cause a dangling pointer/heap scramble bug. It is not obvious from looking at the
source code. However, if you looked at the compiled machine code, you might see that the
compiler stores*h in aregister, calls the subroutine, and finally stores the value returned by the
subroutine using the address stored in the register. Because the subroutine caused the heap to
scramble, the address in the register no longer points to the block of data associated with the
handle.

Chapter 12 — Debugging

The solution is to rewrite this as;

StructHandle h; // A handle to a block containing some structure.
int temp;

h = <Get Handle>;

temp = <Call a routine that scrambles the heaps;

(*h) ->fieldl = temp;

Locking the Block
To prevent this problem, we can lock the block in memory. For example:

Handle hil;
char* pl;

hl = NewHandle (100) ;

HLock (hl) ; // Lock the block so that it can not move.
pl = *hi; // Dereference hl to point to data.

<Do somethings;

HUnlock (hl) ;

Heap Fragmentation

Locking the block tells the memory manager that it is not allowed to move the block. This solves
the heap scramble problem but it introduces another problem. The locked block may bein the
middle of the heap. If the <Do something> routine needs to allocate memory, the memory
manager will not be able to moved the locked block out of the way to consolidate free space. This
iscalled “heap fragmentation” and it may cause <Do something> to fail.

A solution for thisis to move the block away from the middle of the heap before locking it.

Handle hil;

char* pl;

hl = NewHandle (100) ;

MoveHHi (hl) ; // Move the block out of the way.

HLock (hl) ; // Lock the block so that it can not move.
pl = *hl; // Dereference hl to point to data.

<Do somethings;

HUnlock (hl) ;

MoveHHi moves the block to the top of the heap. This solves the heap fragmentation problem but
it introduces another problem. Moving the block to the top of the heap takestime. Thus, it isnot a
good ideato use MoveHHi in aroutine that is frequently-called.

The best solution isto leave the block unlocked and dereference it with care. However, if the
codein gquestion is not called from atight loop, and needs to access many fields in the block of
memory, then locking the block is appropriate.

315

Chapter 12 — Debugging

316

Be Careful About Unlocking a Block

There is yet another problem that can occur because of locking and unlocking a block. Consider
this example:

void
F1l (Handle h)

{
char* p;
HLock (h) ;
p = *h; // Dereference.
<Do something with p>;
HUnlock (h) ;

}

void

F2 (void)

{
Handle h;
char* p;

h = NewHandle (100) ;

HLock (h) ;

p = *h; // Dereference.
F1l(h);

<Do something with p>;

HUnlock (h) ;

}

F2 locks and dereferences the handle. 1t then calls F1 which locks, dereferences, uses and then
unlocks the handle. When F1 returns to F2, the handle is unlocked but F2 thinksit is still locked.
We have a dangling pointer problem.

One solution for thisisto never unconditionally unlock a block. Instead, restoreits
locked/unlocked state to what it was before you locked it. F1 can be rewritten like this;

void

F1l (Handle h)

{
char* p;
int hState;

hState = HGetState (h) ;

HLock (h) ;

p = *h; // Dereference.
<Do something with p>;

HSetState (h, hState);

Chapter 12 — Debugging

Using MovelLockHandle

The XOPSupport Movel ockHandle combines the actions of moving the block to the top of the
heap, getting its locked/unlocked state, and locking the block. We would use it to write F1 like
this:

void

F1 (Handle h)

{

char* p;
int hState;

hState = MoveLockHandle (h) ;

p = *h; // Dereference.
<Do something with p>;

HSetState (h, hState);

}

Recommendations for Using Handles

Now that we know all of the potential problemsin using handles, how can we avoid them? There
isno simple answer to this but here are some guidelines.

First, avoid storing a pointer to arelocatable block in avariable. Instead, use the “ Dereferencing
the Handle Without Using a Pointer Variable” technique described above. If you must store a
pointer, re-dereference the pointer after calling any subroutine that can scramble the heap or
could be changed to scramble the heap in the future.

Second, avoid locking handles because this can cause heap fragmentation and also can slow the
program down. Instead, use the “ Dereferencing the Handle Without Using a Pointer Variable”
technique described above. If thisis not practical, use the Movel ockHandle/H SetState technique
to lock the block while you accessiit.

Testing for Heap Scramble Problems

A heap scramble problem can be quite irreproducible and therefore can easily escape detection.
The reason for thisis that routines that can scramble the heap often do not scramble the heap. For
example, acall to NewHandle can scramble the heap but if the memory manager can allocate the
regquested space without scrambling the heap, it will. Thus, it is very easy to have heap scramble
bugsin your program that manifest themselves sporadically.

On Mac OS 9, the Macsbug debugger has a heap scramble feature. Y ou turn heap scramble on by
executing the HS command from Macsbug. Heap scramble causes the heap to scramble any time
your program calls a routine that possibly could scramble the heap. Thus, if you have a potential

heap scramble problem, it islikely to become symptomatic when you run with heap scramble on.

Thereis no such tool for Mac OS X.

317

Chapter 12 — Debugging

318

Debugging Techniques

This section discusses several methods for debugging an XOP:
» Using asymbolic debugger

» Using XOPNotice (equivalent to a Print statement)

» Using alow-level debugger such as Macsbug

» Using acrash log

This section does not cover the most effective debugging method: carefully reading your code.
Before you spend time debugging, a simple careful reading of your code is the most effective way
to find bugs. If that fails, the techniques discussed here are useful for narrowing down the suspect
area of your code.

Debugging a problem that you can reproduce at will is usually not too difficult.

If you have an intermittent problem, it is useful to look for asimple set of steps that you can take
to make the problem happen. If you can make the problem happen, even one time in ten, with a
simple set of steps, this allows you to rule out alot of potential causes.

Sometimes bugs are so intermittent that there islittle hope of catching them red-handed. For bugs
that cause a crash, a crash log, described on page 319, may help you to identify the problem area.

Recompiling Your XOP

During the debugging process, you often need to recompile your XOP and try it again. Y ou must
quit Igor to recompile your XOP.

It isgeneraly best to leave your executable XOP file in your project folder during development.
Make an alias (Macintosh) or shortcut (Windows) for your XOP file and drag the alias or shortcut
into the Igor Extensions folder to activate your XOP. This saves you the trouble of dragging the
XOPfileinto the Igor Extensions folder each time you recompile the X OP.

Symbolic Debugging

Usually, the debugging method of choiceisto use the symbolic debugger that comes with your
devel opment system. Chapter 3 includes a discussion on using the symbolic debuggers of various
development systems.

Sometimes symbolic debugging does not work because the problem does not manifest itself when
running the debugger or because the bug crashes the debugger. For these cases, the following
debugging techniques are available.

Chapter 12 — Debugging

Debugging Using XOPNotice

The simplest tool for debugging an XOP is the XOPNotice X OPSupport routine. This lets you
print amessage in Igor’ s history area so that you can examine intermediate results and see how
far your XOP is getting. For example:

char temp[256];
sprintf (temp, "Wave type = %d"CR_STR, WaveType (wavH)) ;
XOPNotice (temp) ;

NOTE: When Igor passes a message to you, you must get the message, using GetX OPMessage,
and get al of the arguments, using GetX OPItem, before doing any callbacks, including
XOPNotice. The reason for thisisthat the act of doing the callback overwrites the
message and arguments that Igor is passing to you.

Using Macsbug on Mac OS 9

Macsbug is afree low-level debugger made by Apple Computer. It runs on Mac OS 9 only, not
on Mac OS X. The nice thing about Macsbug isthat it is very unintrusive. It does not require alot
of memory and does not affect the environment in which your XOP executes. It just sits there
quietly until you invoke it or you crash.

Some of the most useful Macsbug commands are:

Command Meaning What It Does

HC Heap check Tellsyou if the heap is corrupted.

SC Stack crawl Shows the chain of functions leading to the one that crashed.

STDLOG Standard Log Generates alog containing information on the state of the
machine.

HS Heap Scramble Causes heap scramble problems to become symptomatic by

scrambling the heap any time a memory allocation is made.

See Chapter 12 in the XOP Toolkit 3.1 manual for further on Macsbug. The XOP Toolkit 3.1
manual isincluded on the XOP Toolkit CD ROM or contact WaveMetrics support to receiveit in
PDF form.

Crash Logs

On Mac OS X, Windows 2000 and Windows XP, the operating system records information about
the state of the machine when a crash occurs. This happens only if a debugger, such asthe
CodeWarrior or Visual C++ debugger, has not handled the crash. Thus the crash log may be

319

Chapter 12 — Debugging

320

useful to help a programmer (such as you) understand what went wrong when a crash occurs on
the machine of anon-programmer (such as the people who use your XOP).

The most useful part of thelog isthe “stack crawl” or “stack back trace” which shows the calling
chain of functions leading to the instruction that crashed. Unfortunately the information in the
stack crawl is not always meaningful. Sometimesiit is garbage but sometimes it provides a useful
clue. Sometimesit is not garbage but is too complicated to be of much use.

On Mac OS X, the crash log isin afile named “Igor Pro.crash.log” (assuming that the Igor
application filesis named “Igor Pro”). Y ou can view thisfile by running Apple’s Console
program and clicking the Logs icon or by searching for the file in the Finder and opening it asa
text file.

On Windows 2000 and XP, the crash log file is named “drwtsn32.log”. It isaplain text file that
you can view in atext editor. The best way to find it isto do afile search from the desktop. On
Windows XP, the crash log fileis hidden and will not be found unless you use the advanced
search settings to include hidden files and folders in the search. For some unknown reason, the
stack crawl (called “stack back trace”) in aDr. Watson log file is usually meaningless. See “Dr.
Watson” in the Windows help for additional information.

Avoiding Common Pitfalls

This section lists some common problems that are specific to X OP programming.

Check Your Project Setup
See Chapter 3 for instructions on setting up CodeWarrior, Xcode and Visual C++ projects.

When in doubt, compare each of the settingsin your project to the settings of an XOP Toolkit
sample project.

If you are getting link errors, check the librariesin your project and compare them to the sample
projects.

Get the Message and Parameters from Igor

When Igor passes a message to you, you must get the message, using GetX OPMessage, and get
all of the arguments, using GetX OPItem, before doing any callbacks. The reason for thisis that
the act of doing the callback overwrites the message and arguments that Igor is passing to you.

This problem often occurs when you put an XOPNotice call in your XOP for debugging
purposes. XOPNoticeis acallback and therefore clobbers the arguments that Igor is sending to

Chapter 12 — Debugging

your XOP. Don't call XOPNotice or any other callback until you have gotten the message and all
parameters from Igor.

Understand the Difference Between a String in a Handle and a C String

When dealing with strings of indeterminate length, Igor uses a handle to contain the string's
characters. Igor passes a string parameter to external operations and functionsin ahandle. There
are other times when you receive a string in a handle from Igor. A string in a handle contains no
null terminator. To find the number of charactersin the string, use GetHandleSize.

A C string requires a null terminator. Thus, you can not use a string in ahandle as a C string.
Instead, you must copy the contents of the handle to a buffer and then null-terminate the buffer.
The XOPSupport functions GetCStringFromHandle and PutCStringl nHandle may be of usein
cases where you can set an upper limit to the length of the string. Make sure that your buffer is
large enough for the characters in the handle plus the null terminator.

Another approach isto append a null character to the handle, lock it, useit as a C string, remove
the null character, and unlock it. Thisis useful for cases where you can not set an upper limit on
the length of the string. For example:

Handle h;
long len;
char* p;
int hState;

h = <A routine that returns a string in a handles;

if (h != NULL) ({
len = GetHandleSize (h) ;
SetHandleSize (h, len+1); // Make room for null terminator.

if (MemError())
return NOMEM;

*(*h+len) = 0; // Null terminate the text.
hState = MoveLockHandle (h) ;
p = *h;

<Use p as a C strings>;
HSetState (h, hState) ;
SetHandleSize (h, len); // Remove null terminator.

There are some times when you are required to pass a string in a handle back to Igor. Again, the
handle must contain just the characters in the string, without a null terminator. On the other hand,
if you are passing a C string to Igor, the string must be null-terminated.

321

Chapter 12 — Debugging

322

Choose Distinctive Names

If your XOP adds an operation or function to Igor you should be careful to choose a namethat is
unlikely to conflict with any built-in Igor names or user-defined names. See Choose a Distinctive
Operation Name on page 150 and Choose a Distinctive Function Name on page 186 for

details.

Set the Menu ID for MENU Resources

If you have a MENU resource in your Macintosh X OP, make sure to set the menu’s menu ID
field. See Menu 1 Ds Versus Resour ce | Ds on page 238 for detalls.

Watch Out for Recursion

If your XOP adds awindow to Igor, the DoUpdate, XOPCommand, X OPSilentCommand, and
SpinProcess X OPSupport routines can cause Igor to call your XOP while your XOP is already
running. See Handling Recursion on page 137 for details.

Structure Alignment

Make sure that all structures that might be shared with Igor are 2-byte-aligned. See Structure
Alignment on page 279 for details.

XOPSupport Routines

About XOPSUPPOIt ROULINES.........cccueiie et see et 325
Routines for Communicating With 1gor.........c.covveeieiiccececeee e 326
Operation Handler ROULINES...........cooiiiiiieieinese e 329
Routines for Parsing COMMEANGS..........coovieriereeeeiese e see e 335
Routines for ACCESSING WAVES..........ccceveiieee ettt nae 336
Routinesfor Accessing Variables ..o 368
Routines for Accessing Data FOIAErScooviirieieieeeeree e 376
Routines for XOPSWith Menu ITeMSccociiiieeiinieeeeee e 392
Routines for XOPsthat Have Dial0gs........cccovvveeeeniiieiese e 398

Dialog POPUP MENUS ..ot 405
Routines for XOPs that ACCESS FlES........ooeeiiiiiieeieeeee e 411
Routines for File-Loader XOPS........ccooiineneseeeeeese e 426
Routines for XOPS With WiNAOWS.........ccceceiiiieiececeere e 430
Routines for XOPs with Text WINQOWS..........cccoveeeniieeneneeene e 435

Creating and Disposing Text WindOWS..........ccccevveeeiiiicresesee e 435

Responding to Text Window MESSAgES...........coeeeeeereneriesieseesee e 436

Text Window Utility ROULINES...........cooiiieereeeeeree e 442
Routines for Dealing With RESOUICES..........cccevivvierie e 447
Routines for XOPS That USe FIFOS........ccccoiiiininiieeeesese s 448
NUMEric CONVErSioN ROULINESccuviuieieiieeeeese ettt ae e sreenee s 450
Routines for Dealing With Object NamES.........cccccovvveereeneenee e 455
ColOr TaDIE ROULINES........coiiiriiniiriesiesie et 461
Routines for Dealing With 1gor ProCedures............coeoereninenenesceesesie 464
Windows-SpeCific ROULINES..........ccooiiieereeer e 473
MisCEllaN@OUS ROULINES.........c.oiiiiieeese et 476
Programming ULIITIEScooiiiiieccesee e 491
Macintosh Emulation ROULINESooeerrieeiese e 497

Emulated Macintosh Memory Management ROULINES............cccceeeeecveennenne 497

323

Chapter 13 — XOPSupport Routines

324

Emulated Menu Management Routines..........
Miscellaneous Emulated Macintosh Routines

Chapter 13 — XOPSupport Routines

About XOPSupport Routines

Thefilesin the XOPSupport folder define alarge number of routines that communicate with Igor
or provide a utility. Most XOPs will use only a small fraction of these routines. These routines are
described in detail in this chapter. The chapter presents the routines in functional groups.

Some routines work only with certain versions of Igor Pro. XOP Toolkit 5 supports Igor Pro 4 or
later so issuesinvolving earlier versions of Igor are not discussed below. Routines that require

Igor Pro 5 are so noted. See I gor/XOP Compatibility | ssues on page 140 for further information
on compatibility.

325

Chapter 13 — XOPSupport Routines - Communicating with Igor

326

Routines for Communicating with Igor

These routines provide communication between your XOP and Igor.

void
XOPInit (ioRecHandle)
IORecHandle ioRecHandle; // Used to pass info between Igor and XOP

The XOP must call XOPInit from its main routine, before calling any other callbacks.

XOPInit stores the ioRecHandle in the global variable XOPRecHandle. All X OPSupport routines
that communicate with Igor use this global variable. Y ou do not need to access it directly.

void
SetXOPType (type)
long type; // Defines capabilities and mode of XOP

type is some combination of TRANSIENT, RESIDENT, IDLES, and
ADDS TARGET_WINDOWS which are bitwise flags defined in XOP.h.

By default, your XOP is resident, meaning that Igor will leave it in memory onceit isinvoked.
Except in very rare cases, you should leave your XOP as resident.

You can call SetXOPType(TRANSIENT) when your XOP is finished and you want Igor to close
it. At one time this was recommended as a memory saving device. Now, however, memory is
more plentiful and making your XOP transient is likely to cause more trouble than it prevents.
XOPsthat define external operations or functions must not be transient because they need to
remain memory-resident. Igor Pro 5 ignores this call if your XOP adds an external operation or
function.

Call SetXOPType(RESIDENT | IDLES) if you want to get periodic IDLE messages from Igor.
Thisis appropriate, for example, in data acquisition X OPs.

The ADDS TARGET_WINDOWS bit has to do with XOP target windows. Most XOPs will not
need to set this bit. See Adding XOP Target Windows on page 257 for further information.

See The | ORecHandle on page 135 for details.
void

SetXOPEntry (entryPoint)
ProcPtr entryPoint; // Routine to handle all messages after INIT

Identifies to Igor the routine in your X OP which services all messages after INIT.

Y ou must call this from your main function, passing it the address of your XOPEntry routine.

Chapter 13 — XOPSupport Routines - Communicating with Igor

void
SetXOPResult (result)
long result; // Result of XOP operation

Sets the result field of your XOP' s |ORecHandle.

Igor looks at the result field when your X OP returns. The result is usually an error codein
response to the CMD, FUNCTION or MENUITEM messages from Igor. For other messages
from Igor, the result may be some other value.

Do not use SetX OPResult to return errors from a direct external operation or function. For a
direct operation or function, the CMD or FUNCTION message is not sent to your XOPENtry
routine. “Direct” means that your function is called directly from Igor, not through your
XOPENtry routine. Such functions return result codes as the function result.

Asof Igor Pro 5, most new external operations and functions will be direct.
See XOP Errorson page 127 for details on error codes.

long

GetXOPResult (void)

Returns the contents of the result field of your XOP's |ORecHandle.

Thisis used by XOPSupport routines to get the result of a callback to Igor. Y ou should not call it
yourself.

void
SetXOPMessage (message)
int message; // Message to pass to Igor during callback

Sets the message field of your XOP' s [ORecHandle.
Thisis used by XOPSupport routines during callbacks to Igor. Y ou should not call it yourself.

long
GetXOPMessage (void)

Returns the message field of your XOP' s |ORecHandle.

The message field contains the message that Igor is sending to your XOP. Y our X OPEntry
routine must call GetX OPMessage to find out what message Igor is sending.

NOTE: Themessage fieldisreused each time Igor calls your XOPENtry routine with a
message or you call Igor back. Therefore, you must call GetX OPMessage before you
do any callbacksto Igor. An easy mistake to make isto do an X OPNotice callback for
debugging before you get the message. See M essages, Arguments and Resultson
page 136 for details.

327

Chapter 13 — XOPSupport Routines - Communicating with Igor

328

void
SetXOPRefCon (refCon)
long refCon; // Something XOP wants to store

Sets the refCon field of your XOP's |IORecHandle.

Y our XOP can store anything it wantsin thisfield. Thiscall israrely used because thereis no
particular reason to use it rather than a global variable.

long
GetXOPRefCon (void)

Returns the refCon field of your XOP' s IORecHandle.

long
GetXOPStatus (void)

Returns the status field of your XOP' s |ORecHandle.
Thisisinfrequently-used. It can tell you if Igor isin the background (not the active application).
See the discussion of status field under The | ORecHandle on page 135.

long
GetXOPItem (itemNumber)
int itemNumber;

Returns an item from the item list of XOP' s |ORec.
itemNumber is zero-based.

If itemNumber is greater than the number of items passed by Igor less one, GetX OPItem returns
zero.

Thisis used by an XOP to get arguments associated with a message from Igor.

NOTE: Theitemlistisreused eachtime lgor calsyour XOPEnNtry routine with a message or
you call Igor back. Therefore, if you need to get an item in response to a message from
Igor, get it before you do any callbacks to Igor. An easy mistake to makeisto do an
XOPNotice callback for debugging before you get all of the arguments. See M essages,
Arguments and Results on page 136 for details.

Chapter 13 — XOPSupport Routines — Operation Handler

Operation Handler Routines

As of Igor Pro 5 and XOP Toolkit 5, XOPs implement external operations using Igor’s Operation

Handler, as described in Chapter 5. This section documents X OPSupport routines used in

conjunction with Operation Handler.

int

RegisterOperation (cmdTemplate, runtimeNumVarList, runtimeStrVarList,
runtimeParamStructSize, runtimeAddress, options)

const char* cmdTemplate; // Specifies operation’s syntax

const char* runtimeNumVarList; // List of numeric output variables
const char* runtimeStrVarList; // List of string output variables

int runtimeParamStructSize; // Size of runtime parameter structure
void* runtimeAddress; // Address of operation Execute
routine

int options; // Flags

Registers an XOP operation with Operation Handler.
cmdTemplate specifies the operation name and syntax.

runtimeNumVarList is a semicolon-separated list of numeric variables that the operation sets at
runtime or NULL if it sets no numeric variables.

runtimeStrVarList is a semicolon-separated list of string variables that the operation sets at
runtime or NULL if it sets no string variables.

runtimeParamStructSize is the size of the runtime parameter structure for the operation.
runtimeAddressiis the address of the ExecuteOperation function for this operation.
options is reserved for future use. Pass zero for this parameter.

Returns O or an error code.

Added for Igor Pro 5.0. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Example

char* cmdTemplate; // From SimpleLoadWaveOperation.c
char* runtimeNumVarList;
char* runtimeStrVarList;

cmdTemplate = "SimpleLoadWave /A [=name:baseName] /D /I /N[=name:baseName] /O
/P=name:pathName /Q /W [string:fileParamStr]";

runtimeNumvarList = "V_flag;";

runtimeStrVarList = "S path;S fileName;S waveNames;";

return RegisterOperation (cmdTemplate, runtimeNumVarList, runtimeStrVarList,
sizeof (SimpleLoadWaveRuntimeParams), ExecuteSimpleLoadWave, 0);

329

Chapter 13 — XOPSupport Routines — Operation Handler

330

int

SetOperationNumVar (varName, dval)

const char* varName; // C string containing name of variable
double dval; // Value to store in variable

SetOperationNumVar is used only to implement an operation using Operation Handler. It is used
to store avaluein an external operation output numeric variable such asV_flag.

varName must be the name of a numeric variable that you specified via the runtimeNumVarList
parameter to RegisterOperation.

dval isthe value to be stored in the named variable.

If your operation was invoked from the command line, SetOperationNumVar sets a global
variable in the current data folder, creating it if necessary.

If your operation was invoked from a macro, SetOperationNumVar sets a macro local variable.

If your operation was invoked from a user function, SetOperationNumV ar sets afunction local
variable.

Returns O or an error code.

Added for Igor Pro 5.0. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Example

SetOperationNumVar ("V_VDT", number) ; // From VDTOperations.c
int

SetOperationStrVar (varName, str)

const char* varName; // C string containing name of variable
const char* str; // Value to store in variable

SetOperationStrVar is used only to implement an operation using Operation Handler. It isused to
storeavalue in an external operation output string variable such as S _fileName.

varName must be the name of a string variable that you specified via the runtimeStrVarList
parameter to RegisterOperation.

str points to the value to be stored in the named variable.

If your operation was invoked from the command line, SetOperationStrVar sets a global variable
in the current datafolder, creating it if necessary.

If your operation was invoked from a macro, SetOperationStrVar sets a macro local variable.

If your operation was invoked from a user function, SetOperationStrVar sets a function local
variable.

Returns O or an error code.

Chapter 13 — XOPSupport Routines — Operation Handler

Added for Igor Pro 5.0. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Example

SetOperationStrVar ("S VDT", list); // From VDTOperations.c

int

VarNameToDataType (varName, dataTypePtr)

const char* varName; // C string containing name of variable or binary

data
int* dataTypePtr; // Output: Data type of variable

Thisis used only to implement an operation using Operation Handler. It must be called only from
your ExecuteOperation function.

Thisfunction is used only for operations which take the name of a variable as a parameter and
then set the value of that variable. An exampleis Igor's Open operation which takes a"refNum”
parameter.

After calling VarNameToDataType you would then call StoreNumericDataUsingVarName or
StoreStringDataUsingV arName.

varName must be a pointer to avarName field in your operation’s runtime parameter structure
when a pointer to this structure has been passed by Igor to your ExecuteOperation function. Igor
relies on the varName field being set correctly (i.e., as Igor set it before calling your
ExecuteOperation function). If your operation was called from a user function, the varName field
will actually contain binary data used by Igor to access function local variables, NVARs and
SVARs.

On output, * dataTypePtr will contain one of the following:
0 Means varName refers to a string variable or SVAR.
NT_FP64 Means varName refers to ascalar local variable or NVAR.
NT_FP64 | NT_CMPLX Means varName refersto a complex local variable or NVAR.
Returns O or an error code.

Added for Igor Pro 5.0. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Example
See VDTReadBinary.c.

331

Chapter 13 — XOPSupport Routines — Operation Handler

332

int

StoreNumericDataUsingVarName (varName, realPart, imagPart)

const char* varName; // C string containing name of variable or binary
data

double realPart;

double imagPart;

Stores data in a numeric variable which may be local or global.

Thisis used only to implement an operation using Operation Handler. It must be called only from
your ExecuteOperation function.

Thisfunction is used only for operations which take the name of anumeric variable asa
parameter and then set the value of that variable. An example is Igor's Open operation which
takesa"refNum" parameter.

varName must be a pointer to avarName field in your operation’s runtime parameter structure
when a pointer to this structure has been passed by Igor to your ExecuteOperation function. Igor
relies on the varName field being set correctly (i.e., aslgor set it before calling your
ExecuteOperation function). If your operation was called from a user function, the varName field
will actually contain binary data used by Igor to access function local variables, NVARs and
SVARs.

Y ou should call this routine only after you have determined that varName refers to a numeric
variable or NVAR. Thiswill be the case if VarNameToDataType returns a non-zero number as
the data type.

Returns O or an error code.

Added for Igor Pro 5.0. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Example
See VDTReadBinary.c.

Chapter 13 — XOPSupport Routines — Operation Handler

int

StoreStringDataUsingVarName (varName, buf, len)

const char* varName; // C string containing name of variable or binary
data

const char* buf; // String contents

long len; // Length of string

Stores datain a string variable which may be local or global.

Thisis used only to implement an operation using Operation Handler. It must be called only from
your ExecuteOperation function.

Thisfunction is used only for operations which take the name of a string variable as a parameter
and then set the value of that variable. An example is Igor's FReadLine operation which takes a
"stringVarName" parameter.

varName must be a pointer to avarName field in your operation’s runtime parameter structure
when a pointer to this structure has been passed by Igor to your ExecuteOperation function. Igor
relies on the varName field being set correctly (i.e., aslgor set it before calling your
ExecuteOperation function). If your operation was called from a user function, the varName field
will actually contain binary data used by Igor to access function local variables, NVARs and
SVARs.

Y ou should call this routine only after you have determined that varName refers to a string
variable or SVAR. Thiswill bethe case if VarNameToDataType returns a zero as the data type.

Returns O or an error code.

Added for Igor Pro 5.0. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Example
See VDTReadBinary.c.

int

SetOperationWaveRef (waveH, waveRefIndentifier)

waveHndl waveH; // The destination wave you created.

int waveRefIndentifier; // Tells Igor where local wave ref is stored.

Sets awave reference in an Igor user-defined function to refer to a destination wave that your
operation created.

Thisis used only to implement an operation using Igor's Operation Handler. It must be called
only from your ExecuteOperation function.

Thisfunction is used only for operations which use a DataFol derAndName parameter (described
on page 166) and declare it as a destination wave parameter using thiskind of syntax in the
operation template:

333

334

Chapter 13 — XOPSupport Routines — Operation Handler

SampleOp DataFolderAndName:{dest,<real> or <complex> or <texts}

When you use this syntax and your operation is compiled in a user-defined function, the Igor
function compiler may automatically create awave reference in the function for the destination
wave. However the automatically created wave reference will be NULL until you set it by calling
SetOperationWaveRef.

The SetOperationWaveRef callback sets the automatically created wave referenceto refer to a
specific wave, namely the wave that you created in response to the DataFolderAndName
parameter. You must call it after successfully creating the destination wave.

Igor will create an automatic wave reference only if the operation is called from a user-defined
function and only if the destination wave is specified using a simple name (e.g., wave0 but not
root:wave0 or $destWave). Y ou have no way to know whether an automatic wave reference was
created so you must call SetOperationWaveRef in all cases. SetOperationWaveRef will do
nothing if no automatic wave reference exists.

The waveRefIndentifier parameter allows Igor to determine where in memory the wave reference
isstored. Thisinformation is passed to your XOP in the "ParamSet" field of your
ExecuteOperation structure.

Y our code should look something like this:

// In your RuntimeParams structure
DataFolderAndName dest;
int destParamsSet [1];

// In your ExecuteOperation function
destWaveH = NULL;
err = MDMakeWave (&destWaveH, p->dest.name, p->dest.dfH, dimensionSizes, type,
overwrite) ;
if (destWaveH != NULL) {
int waveRefIndentifier = p->destParamsSet [0];
err = SetOperationWaveRef (destWaveH, waveRefIndentifier);

}

Returns O or an error code.

Added for Igor Pro 5.04B05. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Chapter 13 — XOPSupport Routines — Parsing Commands

Routines for Parsing Commands

As of Igor Pro 5 and XOP Toolkit 5, XOPs implement external operations using Igor’s Operation
Handler, as described in Chapter 5. Operation Handler automatically takes care of parsing the
command and converting its parameters into useable C variables.

Before Operation Handler, the X OP programmer was required to parse the command. A large
number of XOPSupport routines were available to carry out this often complex task. Those
routines are still supported by the XOP Toolkit and are still needed by X OPs that have not been

updated to use Operation Handler.

To reduce clutter, documentation for these old parsing routines is omitted from this manual. If
you need this documentation, please see Chapter 13 in the XOP Toolkit 3.1 manual. The XOP
Toolkit 3.1 manual isincluded on the XOP Toolkit CD ROM or contact WaveMetrics support to

receiveit in PDF form.

Hereisalist of the old parsing routines:

Capitalize

GetSymb
IsStringExpression
GetFlag
FileLoaderGetOperationFlags
GetName
GetDataFolder
Keyword

GetWave
GetWaveList
GetWaveRange
GetNum

GetFlagNum
GetAString

GetPath
GetNumVarName
CheckTerm

NextSymb

GetTrueOrFalseFlag
FileLoaderGetOperationFlags2
GetDataFolderAndName

GetKeyword

GetWaveName

CalcWaveRange
GetNum2

GetLong
GetAStringInHandle
GetFormat
GetStrVarName
AtEndOfCommand

335

Chapter 13 — XOPSupport Routines - Waves

336

Routines for Accessing Waves

These routines alow you to create, change, kill or access information about waves. Some require
that you pass the wave' s name. Others require that you pass a handle to the wave' s data structure.
Y ou get this handle using the GetWave, GetWavel ist, FetchWave, MakeWave, MDMakeWave,
GetDataFol derObject or FetchWwaveFromDataFolder callbacks.

So that your XOP will work with future versions of Igor, it must not access the contents of wave
handles directly but instead must use the routines in this section. Also, wave handles belong to
Igor and your XOP must not delete or directly modify them.

Igor Pro 3.0 added multi-dimensional waves, up to four dimensions, as well as waves containing
text rather than numbers. To support this, we added a number of XOPSupport routines to the
XOP Toolkit. The added routines have names that start with "MD" (e.g., MDMakeWave). These
routines have several purposes:

» To get and set multi-dimensional wave properties such as units, scaling and dimension labels.
» To get and set multi-dimensional wave data values, text as well as numeric.
» To provide faster access to wave information than previous XOPSupport routines provided.

All of the old wave access routines will continue to work with all supported versions of Igor.
However, for new programming, we recommend that you use the new wave access routines.

The symbols ROWS, COLUMNS, LAY ERS and CHUNKS are defined in IgorXOP.h as 0, 1, 2
and 3 respectively. These symbols are often used to index into an array of dimension sizes or
wave element indices.

All of the wave access routines are defined in the file XOPWaveA ccess.c.

The WaveA ccess sample XOP contains examples that illustrate most of the wave access
techniques.

In the following list of wave access routines, the older routines are listed first, followed by the
newer, multi-dimensional-aware routines.

Chapter 13 — XOPSupport Routines - Waves

int

MakeWave (waveHandlePtr, waveName, numPoints, type, overwrite)
waveHndl* waveHandlePtr; // Place to put waveHndl for new wave
char* waveName; // C string containing name of Igor wave
long numPoints; // Desired length of wave

int type; // Numeric type (e.g., NT FP32, NT FP64)
int overwrite; // If non-zero, overwrites existing wave

Creates a 1D wave with the specified name, number of points, and numeric type.

If successful, it returns 0 as the function result and puts awaveHndl for the new wave in
*waveHandlePtr.

If unsuccessful, it returns an Igor error code as the function result.

If the numPoints parameter is zero, the wave is created with the default number of points (usually
128) and X scaling (usually x0=0, dx=1). This behavior was defined at a time when Igor required
that awave contain at least two points (prior to Igor Pro 3.0). Because of it, you can not use
MakeWave to make awave with zero points. Y ou must use MDMakeWave for that.

typeis one of the following:

Type What It Means
NT_FP32 32 bit floating-point
NT_FP64 64 bit floating-point
NT I8 8 hit signed integer
NT 116 16 bit signed integer
NT_ 132 32 hit signed integer

NT I8 |NT_UNSIGNED 8 hit unsigned integer
NT_116 | NT_UNSIGNED 16 bit unsigned integer
NT_I32 | NT_UNSIGNED 32 bit unsigned integer
TEXT _WAVE _TYPE Text (string data)

To make a complex wave, OR with NT_CMPLX, for example (NT_FP64 | NT_CMPLX). Any
numeric wave can be complex. Text waves can not be complex so don’t use
(TEXT_WAVE_TYPE |NT_CMPLX).

337

Chapter 13 — XOPSupport Routines - Waves

As of thiswriting, Igor can not overwrite a text wave with a numeric wave or vice-versa and you
will receive an error if you attempt to do this.

It is recommended that you use the integer types only to store raw data that you have acquired
and when economical storage isahigh priority, such as when storing images or other large data
sets. The reason for thisisthat Igor needs to trandlate integer wave data into floating point for
display, analysis or just about any other purpose.

int

ChangeWave (waveHandle, numPoints, type)

waveHndl waveHandle; // WaveHndl for wave to change

long numPoints; // Desired new length of wave

int type; // Data type (e.g., NT FP32, NT FPé64)

Changes the 1D wave to the desired length and data type.

Igor Pro can not change a text wave into a numeric wave or vice-versa and you will receive an
error if you attempt to do this.

The function result is O if successful or an Igor error code otherwise.
int

KillWave (waveHandle)
waveHndl waveHandle; // waveHndl for wave to kill

Kills the specified wave.
The function result is O if successful or an Igor error code otherwise.

A waveisinuseand can't bekilled if it is used in agraph, table or user-defined function. An
XOP can also prevent awave from being killed by responding to the OBJINUSE message from
Igor.

waveHndl
FetchWave (waveName)
char* waveName; // C string containing name of Igor wave

Returns a handle to the data structure for the named wave in the current data folder or NULL if
the wave does not exist.

Be sure to check the wave' stype, using WaveType, and return an error if you receive awave asa
parameter whose type you can't handle. Y ou may also want to check the dimensionality of the
wave using MDGetWaveDimensions.

To support data folders and liberal wave names, modern XOPs must use
FetchWaveFromDataFolder instead of FetchWave.

338

Chapter 13 — XOPSupport Routines - Waves

waveHndl

FetchWaveFromDataFolder (dataFolderH, waveName)
DataFolderHandle dataFolderH;

char* waveName;

FetchWaveFromDataFol der returns a handle to the specified wave in the specified data folder or
NULL if the wave does not exist.

If dataFolderH is NULL, it uses the current data folder.

Be sure to check the wave' stype, using WaveType, and return an error if you receive awave asa
parameter whose type you can’t handle. Y ou may also want to check the dimensionality of the
wave using MDGetWaveDimensions.

int

WaveType (waveHandle)

waveHndl waveHandle; // Handle to wave's data structure
Returns the wave' s data type.

See MakeWave for alist of datatypes.

NOTE: Futureversions of Igor may support other data types. Y ou should make sure that you
can handle the type of wave you receive as a parameter in an operation or function and
generate an error if you receive awave type you can't handle.

long
WavePoints (waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns the number of pointsin the wave.

If the wave is multi-dimensional, thisisthe number of elementsin all dimensions. To find the
number of elementsin each dimension separately, use MDGetWaveDimensions.

unsigned long
WaveModDate (waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns wave modification date. Thisis an unsigned long in Igor date/time format, namely the
number of seconds since midnight, January 1, 1904.

The mod date has a resolution of one second.

Modification date tracking was added to Igor in Igor 1.2. If awaveisloaded from afile created
by an older version of Igor, the mod date field will be zero and this routine will return zero.

339

Chapter 13 — XOPSupport Routines - Waves

340

int
WaveModCount (waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns avalue that can be used to tell if awave has been changed between one call to
WaveM odCount and another.

The exact value returned by WaveM odCount has no significance. The only valid use for itisto
compare the values returned by two calls to WaveModCount. If they are the different, the wave
was changed in the interim.

Example

waveModCountl = WaveModCount (wavH) ;

waveModCount2 = WaveModCount (wavH) ;
if (waveModCount2 != waveModCountl)
// Wave has changed.

This routine was added in Igor Pro 4.0. If you are running with an earlier version of Igor, it will
aways return 0.

int

WaveModState (waveHandle)

waveHndl waveHandle; // Handle to wave's data structure
Returns the truth that the wave has been modified since the last save to disk.

int

WaveLock (waveHandle)

waveHndl waveHandle; // Handle to wave's data structure
Returns the lock state of the wave.

A return value of 0 signifies that the wave is not locked.

A return value of 1 signifies that the wave islocked. In that case, you should not kill the wave or
modify it in any way.

Added in Igor Pro 5.00. When running with an earlier version, WavelL ock always returns 0.

int

SetWaveLock (waveHandle, lockState)

waveHndl waveHandle; // Handle to wave's data structure
int lockState; // 0 or 1

Setswave's lock state. If lockState is 0, the wave will be unlocked. If it is 1, the wave will be
locked. All other bits are reserved.

Returns the previous state of the wave lock setting.

Chapter 13 — XOPSupport Routines - Waves

Added in Igor Pro 5.00. When running with an earlier version, SetWavel ock isa NOP and
aways returns 0.

void
WaveScaling (waveHandle, dxPtr, xO0Ptr, topPtr, botPtr)
waveHndl waveHandle; // Handle to wave's data structure

double *dxPtr, *x0Ptr, *topPtr, *botPtr;

Returns the wave' s X and data scaling information.

Igor calculates the X value for point p of the wave as:

X value=x0 + dx*p

top and bottom are the values user entered for the wave' s data full scale.
If both are zero then there is no data full scale for thiswave.

New X OPs should use MDGetWaveScaling instead of WaveScaling so that they can access
scaling for higher dimensions.

void
SetWaveScaling (waveHandle, dxPtr, x0Ptr, topPtr, botPtr)
waveHndl waveHandle; // Handle to wave's data structure

double *dxPtr, *x0Ptr, *topPtr, *botPtr;
Sets the X scaling and data full scale for the specified wave.

If either dxPtr or xOPtr isNULL, the X scaling is not set. Otherwise, Igor setsthe X scaling of the
wave. Thisisthe same setting asis set by the SetScale x operation from within Igor. Igor
calculates the X value for point p of the wave as:

X value=x0 + dx*p

If either topPtr or botPtr is NULL, the datafull-scale is not set. Otherwise, Igor sets the data full
scale of the wave. Thisisthe same setting asis set by the SetScale d operation from within Igor.
This setting is used only for documentation purposes. For example, if datawas acquired on a-10
to 10 volt range, you would set the data full scaleto (-10, 10).

New XOPs should use MDSetWaveScaling instead of SetWaveScaling so that they can access
scaling for higher dimensions.

341

Chapter 13 — XOPSupport Routines - Waves

void

WaveUnits (waveHandle, xUnits, yUnits)

waveHndl waveHandle; // Handle to wave's data structure
char* xUnits; // C string defining wave's X units
char* dataUnits; // C string defining wave's data units

Returns the wave' s X and data units.

The units are strings like “kg”, “m”, or “s’, or “” for no units.

Inlgor Pro 3.0, the number of characters allowed was increased from 3 to 49
(MAX_UNIT_CHARYS). For backward compatibility, WaveUnits will return no more than 3
characters (plus the null terminator). To get the full units and to access units for higher
dimensions, new XOPs should use MDGetWaveUnits instead of WaveUnits.

void

SetWaveUnits (waveHandle, xUnits, yUnits)

waveHndl waveHandle; // Handle to wave's data structure
char* xUnits; // C string defining wave's X units
char* dataUnits; // C string defining wave's data units

Setsthe wave's X and data units.

The units are strings like “kg”, “m”, or “s’, or
If xUnitsisNULL the X units are not set.

If dataUnitsis NULL, the data units are not set.

When running with Igor Pro 3.0 or later, units can be up to 49 (MAX_UNIT_CHARS) characters
long.

for no units.

In earlier versions of Igor, units are limited to 3 characters. Y ou can pass alonger units string but
only the first 3 characters will be used.

New X OPs should use MDSetWaveUnits instead of SetWaveUnits so that they can access units
for higher dimensions.

Handle
WaveNote (waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns a handle to the wave' s note text or NULL if the wave has no wave note.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handle and a C String on page 321.

342

Chapter 13 — XOPSupport Routines - Waves

Thisisthe handle that Igor uses to store the wave' s note and it belongsto Igor. Therefore, you
should not modify or dispose of this handle. If you want to change the wave' s note, use the
SetWaveNote callback.

void

SetWaveNote (waveHandle, noteHandle)

waveHndl waveHandle; // Handle to wave's data structure

Handle noteHandle; // Handle to the text for the wave's note

Sets the wave' s note.

noteHandle should be ahandle to plain text with lines separated by carriage returns (ASCII 13)
and with no null termination at the end. Once you pass the noteHandle to Igor it belongs to Igor
so don't modify or dispose of it. This should be a handle that you created in your XOP using the
NewHandle or HandToHand, not a handle you got from Igor.

If noteHandleis NULL the note is set to empty.

void

WaveName (waveHandle, namePtr)

waveHndl waveHandle; // Handle to wave's data structure
char name [MAX OBJ NAME+1]; // C string to receive name

Puts the wave’ s name in the string identified by namePtr.

void*
WaveData (waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns pointer to the start of wave's data.

NOTE: The pointer isonly valid if the block of memory containing the wave' s datais not
relocated by the memory manager. Make sure that the handle is locked or that you do
nothing that can cause it to be relocated while you use the pointer. See Dangling
Pointer / Heap Scramble Problems on page 312 for details on locking and unlocking
handles.

See Chapter 7 for detailed instructions on accessing wave data.

343

Chapter 13 — XOPSupport Routines - Waves

344

long
GetWavesInfo (waves,numWaves,waveTypes,wavePoints,waveStates,wavePtrs)
waveHndl waves]|]; // Array of wave handles
int numWaves; // Number of wave handles in waves/|[]
int waveTypes|]; // On output, array of wave numeric types
long wavePoints|[]; // On output, array of wave lengths
int waveStates/|]; // On output, array of waveHndl hStates
]

float* wavePtrs]|]; // On output, array of pointers to wave data

Given an array of wave handles and the number of wave handlesin the array, GetWavesinfo
returns the type, length, handle state and pointer to the start of data for each wave viawaveTypes,
wavel engths, waveStates and wavePtrs. Each array must be able to hold at least numWaves
elements.

If agiven wave handlein wavesis NULL, GetWavesinfo skips that element.

If waveStatesis not NULL, it puts the current locked/unlocked state of the wave handle in the
waveStates array, moves the handle to the top of the heap and locks it. If waveStatesis NULL, it
does none of this.

The function result is the length of the longest wave.

GetWaveslinfo is of use when you need to lock a number of wave handles to access their data and
then need to restore them to the state they were in before.

void

SetWavesStates (waves, numWaves, waveStates)

waveHndl waves|[]; // Array of wave handles

int numWaves; // Number of wave handles in waves/|[]

int waveStates]|]; // On output, array of waveHandle hStates

Given an array of wave handles and the number of wave handlesin the array, SetWavesStates
sets the locked/unlocked state for each wave handle according to states in waveStates.

If agiven wave handlein the waves array is NULL, SetWavesStates skips that element.

This cal isthe companion to GetWavesinfo. Y ou would call this to restore wave handles after
locking them and accessing their data.

Chapter 13 — XOPSupport Routines - Waves

void
WaveHandleModified (waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Informs Igor that your X OP modified the specified wave.
At the time of the next update, Igor will update any windows that display the wave.

void

WaveHandlesModified (waves, numWaves, start, end)

waveHndl waves|]; // NumWaves handles to wave data

int numWaves; // Number of wave handles in waves[]

long start/[]; // Start point numbers for modified range or NULL
long endl[]; // End point numbers for modified range or NULL

Informs Igor that your X OP modified the specified waves.

If any element of the waves array isNULL, Igor skips that element.

start and end are arrays of start and end point numbers for the modified range of each wave.
If start isNULL, the range start for each wave isthe start of that wave.

If end is NULL, the range end for each wave is the end of that wave.

Currently, Igor updates the entire wave for each wave in the waves array if the wave is displayed
in agraph or table. A future version of Igor may use the range information to minimize the
amount of updating that needs to be done.

void
WaveModified (waveName)
char* waveName; // C string containing wave's name

Informs Igor that your X OP modified the wave referred to by waveName in the current data
folder.

So that your XOP will not depend on the current data folder, you should use
WaveHandleModified instead of WaveM odified.

345

Chapter 13 — XOPSupport Routines - Waves

346

int

MDMakeWave (wavHPtr,waveName, dataFolderH,dimensionSizes, type, overwrite)
waveHndl* wavHPtr; // Place to put waveHndl for new wave

char* waveName; // C string containing name of Igor wave
DataFolderHandle dataFolderH; // Handle to data folder or NULL.
long dimensionSizes[MAX DIMENSIONS+1l]; // Array of dimension sizes

int type; // Data type for new wave

int overwrite; // If non-zero, overwrites existing wave

Makes awave with the specified name, type and dimension sizes in the specified datafolder.
If dataFolderH is NULL, it usesthe current folder.
See MakeWave for alist of valid datatypes.

If overwrite is non-zero, an existing wave with the same name will be overwritten. However, as
of thiswriting, Igor can not overwrite a text wave with a numeric wave or vice-versa and you will
receive an error if you attempt to do this.

If overwriteis zero and awave of the specified name exists, MDMakeWave will return anon-
zero error code result.

For each dimension, dimensionSizeg]i] specifies the number of elementsin that dimension. For a
wave of dimension n, i goes from 0 to n-1.

NOTE: dimensionSizesn] must be zero. Thisis how Igor determines how many dimensions
the waveisto have.

Returns error code or O if wave was made.

Example

waveHndl waveH;

char waveName [MAX OBJ NAME+1];

long dimensionSizes [MAX DIMENSIONS+1];
int result;

strcpy (waveName, "Wave3D") ;

dimensionSizes[0] = 10; // 10 rows

dimensionSizes[1] = 10; // 10 columns

dimensionSizes[2] = 10; // 10 layers

dimensionSizes[3] = 0; // 0 marks first unused dimension

if (result = MDMakeWave (&waveH, waveName, NULL, dimensionSizes, NT FPé64,
return result;

Chapter 13 — XOPSupport Routines - Waves

int

MDGetWaveDimensions (wavH, numDimensionsPtr, dimensionSizes)
waveHndl wavH; // Handle to the wave of interest
long* numDimensionsPtr; // Number of dimensions in the wave

long dimensionSizes [MAX DIMENSIONS+1]; // Array of dimension sizes

Returns the number of used dimensions in wave via numDimensionsPtr and the number of points
in each used dimension via dimensionSizes.

If you only want to know the number of dimensions, you can pass NULL for dimensionSizes.

NOTE: dimensionSizes (if not NULL) should have room for MAX_DIMENSIONS+1 values.

For an n dimensional wave, MDGetWaveDimensions sets dimensionSizes[0..n-1] to the number
of elementsin the corresponding dimension and sets dimensionSizesin..MAX_DIMENSIONS] to
zero, indicating that they are unused dimensions. This guarantees that there will always be an
element containing zero in the dimensionSizes array.

The function result is 0 or an Igor error code.

Example

long numDimensions;
long dimensionSizes [MAX DIMENSIONS+1];
int result;

if (result = MDGetWaveDimensions (wavH, &numDimensions, dimensionSizes))
return result;

347

Chapter 13 — XOPSupport Routines - Waves

int

MDChangeWave (wavH, dataType, dimensionSizes)

waveHndl wavH; // Handle to the wave of interest

int dataType; // New numeric type or -1 for no change
long dimensionSizes [MAX DIMENSIONS+1]; // Array of new dimension sizes

Changes one or more of the following:
The wave' s data type.
The number of dimensionsin the wave.
The number of pointsin one or more dimensions.

dataTypeisone of the following:
-1for no change in data type.
One of the datatypes listed for the MakeWave X OPSupport routine.

Except for TEXT_WAVE_TY PE, the data types may be ORed with NT_COMPLEX to make the
wave complex.

Converting atext wave to numeric or vice versais currently not supported and will result in an
error.

dimensionSizeq[i] contains the desired number of points for dimensioni.

For n dimensions, dimensionSizes/n] must be zero. Then the size of each dimension is set by
dimensionSizeg[0..n-1]. If dimensionSizeq[i] == -1, then the size of dimension i will be
unchanged.

The function result is O or an error code.

Example

int dataType;
long dimensionSizes [MAX DIMENSIONS+1] ;
int result;

// Clear all dimensions sizes to avoid undefined values.
MemClear (dimensionSizes, sizeof (dimensionSizes)) ;

dimensionSizes[0] = 10; // 10 rows

dimensionSizes[1] = 10; // 10 columns

dimensionSizes[2] = 10; // 10 layers

dimensionSizes[3] = 0; // 0 marks first unused dimension
dataType = NT FP64 | NT CMPLX; // complex, double-precision

if (result = MDChangeWave (wavH, dataType, dimensionSizes))
return result;

If you are running with Igor version<3.0, attempts to make waves of more than one dimension
will generate a non-zero error code result.

348

Chapter 13 — XOPSupport Routines - Waves

int

MDChangeWave2 (wavH, dataType, dimensionSizes, mode)

waveHndl wavH; // Handle to the wave of interest

int dataType; // New numeric type or -1 for no change

long dimensionSizes [MAX DIMENSIONS+1]; // Array of new dimension sizes
int mode;

Thisis the same as MDChangeWave except for the added mode parameter.

Mode Data For mat
Mode=0 Does anormal redimension.
Mode=1 Changes the wave's dimensions without changing the wave data.

Thisis useful, for example, when you have a 2D wave consisting of 5 rows and
3 columns which you want to treat as a 2D wave consisting of 3 rowsand 5
columns or if you have loaded floating point data into an unsigned byte wave.

Mode=2 Changes the wave data from big-endian to little-endian or vice versa.

Thisis useful when you have loaded data from afile that uses a byte ordering
different from that of the platform on which you are running.

Returns O or an error code.

Added in Igor Pro 5.04B06. If mode is zero it will work with Igor Pro 3.0 or later. If mode is non-
zero and the version of Igor isearlier than 5.04B06 it will return IGOR_OBSOLETE and do
nothing.

int

MDGetWaveScaling (wavH, dimension, sfAPtr, sfBPtr)

waveHndl wavH; // Handle to the wave of interest
int dimension;

double* sfAPtr; // Delta value goes here

double* sfBPtr; // Offset value goes here

Returns the dimension scaling values or the data full scale values for the wave via sfAPtr and
sfBPtr. If dimensionis -1, it returns the data full scale values. Otherwisg, it returns the dimension
scaling for the specified dimension.

For dimension i (i=0 to 3), the scaled index for point pis:
<scaled index> = fA[i]*p + sfBJ[i]

349

Chapter 13 — XOPSupport Routines - Waves

If dimension is-1, this gets the wave' s data full scale setting instead of dimension scaling.
*sfAPtr points to the top full scale value and * sfBPtr points to the bottom full scale value.

See Wave Scaling and Units on page 218 for a discussion of the distinction between dimension
scaling and data full scale.

The function result is 0 or an Igor error code.

Example

double sfA;
double sfB;
int result;

if (result = MDGetWaveScaling(wavH, ROWS, &sfA, &sfB)) // Get X scaling
return result;
if (result = MDGetWaveScaling(wavH, COLUMNS, &sfA, &sfB)) // Get Y scaling

return result;

int

MDSetWaveScaling (wavH, dimension, sfAPtr, sfBPtr)

waveHndl wavH; // Handle to the wave of interest
int dimension;

double* sfAPtr; // Points to new delta value
double* sfBPtr; // Points to new offset value

Sets the dimension scaling values or the data full scale values for the wave via sfAPtr and sfBPtr.
If dimensionis-1, it setsthe data full scale values. Otherwise, it sets the dimension scaling for the
specified dimension.

For dimension i (i=0 to 3), the scaled index of point pis:
<scaled index> = sfA[i]*p + sfBJ[i]

If dimension is-1, this sets the wave's data full scale setting instead of dimension scaling.
*sfAPtr points to the top full scale value and * sfBPtr points to the bottom full scale value.

See Wave Scaling and Units on page 218 for a discussion of the distinction between dimension
scaling and data full scale.

The function result is 0 or an Igor error code.
Example

This example sets the scaling of the row and column dimensions to the default (scaled value ==
row/column number) without affecting the scaling of any other dimensions that might exist in the
wave.

double sfA;
double sfB;

350

Chapter 13 — XOPSupport Routines - Waves

int result;

sfA = 1.0; sfB = 0.0;

if (result= MDSetWaveScaling(wavH, ROWS, &sfA, &sfB)) // Set X scaling

return result;
sfA = 1.0; sfB = 0.0;

if (result= MDSetWaveScaling(wavH, COLUMNS, &sfA, &sfB)) // Set Y scaling

return result;

int

MDGetWaveUnits (wavH, dimension, units)

waveHndl wavH; // Handle to the wave of interest
int dimension;

char units[MAX UNIT CHARS+1]; // C string

Returns the units string for a dimension in the wave or for the wave' s data via units. If dimension
is-1, it gets the data units. Otherwise, it gets the dimension units for the specified dimension
(ROWS, COLUMNS, LAYERS, CHUNKYS).

The function result is 0 or an Igor error code.

Units may be up to 49 (MAX_UNIT_CHARSY) characters. Y ou should allocate
MAX_UNIT_CHARS+1 bytes for units.

See Wave Scaling and Units on page 218 for a discussion of the distinction between dimension
units and data units.

Example

long numDimensions;

int dimension;

char units[MAX UNIT CHARS+1];
char buf[256] ;

int result;

if (result = MDGetWaveDimensions (wavH, &numDimensions, NULL))
return result;
for (dimension=0; dimension<numDimensions; dimension++) {
if (result = MDGetWaveUnits (wavH, dimension, units))
return result;

sprintf (buf, "Units for dimension %d: \"%$s\""CR_STR, dimension, units);

XOPNotice (buf) ;

351

Chapter 13 — XOPSupport Routines - Waves

352

int

MDSetWaveUnits (wavH, dimension, units)

waveHndl wavH; // Handle to the wave of interest
int dimension;

char units[MAX UNIT CHARS+1]; // C string

Sets the units string for a dimension in the wave or for the wave' s datavia units. If dimension is -
1, it sets the data units. Otherwise, it sets the dimension units for the specified dimension (ROWS,
COLUMNS, LAYERS, CHUNKYS).

The function result is 0 or an Igor error code.

Unitsmay be up to 49 (MAX_UNIT_CHARS) characters. If the string you passistoo long, Igor
will store atruncated version of it.

See Wave Scaling and Units on page 218 for a discussion of the distinction between dimension
units and data units.

Example

char units [MAX_UNIT_CHARS+1] ;
int result;

if (result = MDSetWaveUnits (wavH, 0, "s")) // Set X units to seconds
return result;
if (result = MDSetWaveUnits(wavH, -1, "v")) // Set data units to volts

return result;

int

MDGetDimensionLabel (wavH, dimension, element, dimLabel)

waveHndl wavH; // Handle to the wave of interest

int dimension; // The dimension of interest.

long element; // The element whose label is to be gotten.
char* dimLabel; // Label returned here.

Returns the label for the specified element of the specified dimension asa C string viadimL abel.

Y ou should allocate dimLabel asfollows:
char dimLabel [MAX DIM LABEL CHARS+1];

MAX_DIM_LABEL_CHARS isdefined in IgorXOP.h to be 255. At present, |gor truncates
labels at 31 characters. This may be increased up to 255 in afuture version without requiring your
XOP to be recompiled.

If element is-1, this specifies alabel for the entire dimension. If element is between 0 and n-1,
where nisthe size of the dimension, then element specifies alabel for that element of the
dimension only. You will receive an error if dimension or element isless than -1 or greater than
n-1.

Chapter 13 — XOPSupport Routines - Waves

A dimension label may be empty ("").
The function result is 0 or an Igor error code.

See the WaveA ccess sample XOP for an example.

int

MDSetDimensionLabel (wavH, dimension, element, dimLabel)

waveHndl wavH; // Handle to the wave of interest

int dimension; // The dimension of interest

long element; // The element whose label is to be gotten.
char* dimLabel; // You pass value here

Sets the label for the specified element of the specified dimension.

At present, Igor will truncate the label at 31 characters. This may be increased in the future
without requiring your XOP to be recompiled.

If element is-1, this specifies alabel for the entire dimension. If element is between 0 and n-1,
where nisthe size of the dimension, then element specifies alabel for that element of the
dimension only. Y ou will receive an error if dimension or element is less than -1 or greater than
n-1.

The function result is 0 or an Igor error code.

See the WaveA ccess sample XOP for an example.

int

GetWaveDimensionLabels (waveH, dimLabelsHArray)

waveHndl waveH; // Handle to the wave of
interest

Handle dimLabelsHArray [MAX DIMENSIONS] ; // Labels returned via this
array

dimLabelsHArray pointsto an array of MAX_DIMENSIONS handles.
GetWaveDimensionL abels sets each element of this array to a handle containing dimension labels
ortoNULL.

On output, if the function result is 0 (no error), dimLabelsHArray[i] will be a handle containing
dimension labels for dimension i or NULL if dimension i has no dimension labels.

If the function result is non-zero then all handlesin dimLabelsHArray will be NULL.

Any non-NULL output handles belong to you. Dispose of them with DisposeHandle when you
are finished with them.

For each dimension, the corresponding dimension label handle consists of an array of N+1 C
strings, each in afield of (MAX_DIM_LABEL_ CHARS+1) bytes.

353

Chapter 13 — XOPSupport Routines - Waves

354

Thefirst label isthe overall dimension label for that dimension.
Label i+1 isthe dimension label for element i of the dimension.

N is the smallest number such that the last non-empty dimension label for a given dimension and
al dimension labels before it, whether empty or not, can be stored in the handle.

For example, if a5 point 1D wave has dimension labels for rows 0 and 2 with all other dimension
|abels being empty then dimLabelsHArray[0] will contain four dimension labels, one for the
overall dimension and three for rows O through 2. dimLabelsHArray[0] will not contain any
storage for any point after row 2 because the remaining dimension labels for that dimension are
empty.

Returns 0 or an error code.

For an example using this routine, see TestGetAndSetWaveDimensionLabelsin
XOPWaveAccess.C.

Added for Igor Pro 5.04. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

int

SetWaveDimensionLabels (waveH, dimLabelsHArray)

waveHndl waveH; // Handle to the wave of
interest

Handle dimLabelsHArray [MAX DIMENSIONS] ; // Labels passed in this array

dimLabelsHArray pointsto an array of MAX_DIMENSIONS handles.
SetWaveDimensionL abels sets the dimension labels for each existing dimension of waveH based
on the corresponding handle in dimLabelsHATrray.

The handlesin dimLabelsHArray belong to you. Dispose of them with DisposeHandle when you
are finished with them.

See the documentation for GetWaveDimensionLabels for a discussion of how the dimension
|abels are stored in the handles.

Returns 0 or an error code.

For an example using this routine, see TestGetAndSetWaveDimensionLabelsin
XOPWaveAccess.c.

Added for Igor Pro 5.04. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Chapter 13 — XOPSupport Routines - Waves

int
MDAccessNumericWaveData (wavH, accessMode, dataOffsetPtr)
waveHndl wavH; // Handle to the wave of interest

int accessMode;
long* dataOffsetPtr;

MDA ccessNumericWaveData provides one of several methods of access to the data for numeric
waves. MDA ccessNumericWaveData is the fastest of the access methods but also is the most
difficult to use. See Accessing Numeric Wave Data on page 212 for a comparison of the various
methods.

wavH is the wave handle containing the data you want to access.

accessMode is a code that tells Igor how you plan to access the wave data and is used for afuture
compatibility check. At present, there is only one accessMode. Y ou should use the symbol
kMDWaveA ccessModeO for the accessM ode parameter.

On output, if thereis no error, * dataOffsetPtr contains the offset in bytes from the start of the
wave handle to the data. Y ou can use this offset to point to the start of the wave datain the wave
handle. See Accessing Numeric Wave Data on page 212 for a discussion of how wave datais
layed out in memory.

The function result is 0 or an error code.

If it returns a non-zero error code, you should not attempt to access the wave data but merely
return the error code to Igor as the result of your function or operation. At present, thereis only
one case in which MDA ccessNumericWaveData will return an error code — if the wave is atext
wave.

It is possible, though unlikely, that a future version of Igor Pro will store wave datain a different
way, such that the current method of accessing wave datawill no longer work. If your XOP ever
runs with such afuture Igor, MDA ccessNumericWaveData will return an error code indicating
the incompatibility. Y our XOP will refrain from attempting to access the wave data and return the
error codeto Igor. Thiswill prevent a crash and indicate the nature of the prablem to the user.

Example

This example adds one to each element of awave of two dimensions. It illustrates the difficulty in
using MDA ccessNumericWaveData - you need to take into account the data type of the wave that
you are accessing. The other access methods, described in Chapter 7, don’t require this.

long numDimensions;

long dimensionSizes [MAX DIMENSIONS+1] ;

long numRows, numColumns, row, column, dataOffset;

int type, type2, isComplex;

char* cp; short* sp; long* lp;

unsigned char* ucp; unsigned short* usp; unsigned long* ulp;
float* fp; double* dp;

355

Chapter 13 — XOPSupport Routines - Waves

int hState, result;

type = WaveType (wavH) ;

type2 = type & ~NT CMPLX; // Type without the complex bit set
isComplex = type & NT_ CMPLX;
if (type2 == TEXT_WAVE_TYPE)

return NUMERIC ACCESS ON TEXT WAVE;
if (result = MDGetWaveDimensions (wavH, &numDimensions, dimensionSizes))
return result;
if (numDimensions != 2)
return REQUIRES 2D WAVE; // An error code defined by your XOP
numRows = dimensionSizes [ROWS] ;
numColumns = dimensionSizes [COLUMNS] ;
if (result=MDAccessNumericWaveData (wavH, kMDWaveAccessModeO, &dataOffset))
return result;
hState = MoveLockHandle (wavH) ; // Lock handle so data won’t move.
dp= (double*) ((char*) (*wavH) + dataOffset); fp=(float*)dp;
lp= (long*)dp; sp=(short*)dp; cp=(char*)dp;
ulp=(unsigned long*)dp; usp=(unsigned short*)dp;
ucp= (unsigned char*)dp;
for (column=0; column<numColumns; column++) {
for (row=0; row<numRows; row++) {
switch (type2) {
case NT FP64:
*dp++ += 1; if (isComplex) *dp++ += 1; break;
case NT_FP32:
*fp++ += 1; if (isComplex) *fp++ += 1; break;
case NT I32:
*1p++ += 1; if (isComplex) *1p++ += 1; break;
case NT TIl6:
*sp++ += 1; if (isComplex) *sp++ += 1; break;
case NT I8:
*cp++ += 1; if (isComplex) *cp++ += 1; break;
case NT I32 | NT UNSIGNED:
*ulp++ += 1; if (isComplex) *ulp++ += 1; break;
case NT I16 | NT UNSIGNED:
*usp++ += 1; if (isComplex) *usp++ += 1; break;
case NT I8 | NT UNSIGNED:
*ucp++ += 1; 1if (isComplex) *ucp++ += 1; break;

default: // Unknown data type - possible in a future Igor.
HSetState ((Handle)wavH, hState) ;
return NT FNOT AVAIL; // Func not supported on this type.

}
}

HSetState ((Handle)wavH, hState) ;

356

Chapter 13 — XOPSupport Routines - Waves

int

MDGetNumericWavePointValue (wavH, indices, value)

waveHndl wavH; // Handle to the wave of interest
long indices [MAX DIMENSIONS] ; // Identifies the point of interest
double value[2]; // Value returned here

Returns via value the value of a particular element in the specified numeric wave.

The value returned is always double precision floating point, regardless of the precision of the
wave.

indicesis an array of dimension indices. For example, for a3D wave:
indiceq 0] contains the row number
indices[1] contains the column number
indices[2] contains the layer number
This routine ignores indices for dimensions that do not exist in the wave.
Thereal part of the value of specified point is returned in valug[Q].

If the wave is complex, the imaginary part of the value of specified point is returned in value[1].
If the wave is not complex, valug[1] is undefined.

The function result is 0 or an error code.

Currently the only error code returned isMD_WAVE_BAD_INDEX, indicating that you have
passed one or more invalid indices. An index for aparticular dimensionisinvalid if it isless than
zero or greater than or equal to the number of pointsin the dimension. Future versions of Igor
may return other error codes. If you receive an error, just return it to Igor so that it will be
reported to the user.

See the example below for MDSetNumericWavePointV alue.

357

358

Chapter 13 — XOPSupport Routines - Waves

int

MDSetNumericWavePointValue (wavH, indices, value)

waveHndl wavH; // Handle to the wave of interest
long indices[MAX DIMENSIONS] ; // Identifies the point of interest
double value[2]; // Value returned here

Sets the value of a particular point in the specified numeric wave.

The value that you supply is aways double precision floating point, regardless of the precision of
the wave.

indicesis an array of dimension indices. For example, for a3D wave:
indices[0] contains the row number
indiceq[1] contains the column number
indices[2] contains the layer number
Thisroutine ignores indices for dimensions that do not exist in the wave.
You passin value[0] therea part of the value.

If the wave is complex, you pass the imaginary part in valug[1]. If the wave is not complex,
M D SetNumericWavePointValue ignores value[1].

When storing into an integer wave, M D SetNumericWavePointV alue truncates the value that you
are storing. If you want, you can do rounding before calling MDSetNumericWavePointVal ue.

The function result is O or an error code.

Currently the only error code returned isMD_WAVE_BAD_INDEX, indicating that you have
passed one or more invalid indices. An index for a particular dimension isinvalid if it is less than
zero or greater than or equal to the number of pointsin the dimension. Future versions of Igor
may return other error codes. If you receive an error, just return it to Igor so that it will be
reported to the user.

Example

This example adds one to each element of awave of two dimensions. It illustrates the ease in
using M DGetNumericWavePointV alue and M D SetNumericWavePointValue — you don’t need to
user pointers and you don’t need to take into account the data type of the wave that you are
accessing. However, it is somewhat slower than the other methods. See Chapter 7 for speed
comparisons.

long numDimensions;

long dimensionSizes [MAX DIMENSIONS+1];
long numRows, numColumns;

long row, column;

long indices [MAX DIMENSIONS] ;

int isComplex;

Chapter 13 — XOPSupport Routines - Waves

double wvalue[2];
int result;

isComplex = WaveType (wavH) & NT CMPLX;

if (result = MDGetWaveDimensions (wavH, &numDimensions, dimensionSizes))
return result;

if (numDimensions != 2)

return REQUIRES 2D WAVE; // An error code defined by your XOP
numRows = dimensionSizes[0];
numColumns = dimensionSizes|[1];
MemClear (indices, sizeof (indices)); // Must be 0 for unused dimensions.
for (column=0; column<numColumns; column++) {

indices[1] = column;

for (row=0; row<numRoOwS; YoOw++) {

indices[0] = row;

if (result = MDGetNumericWavePointValue (wavH, indices, value))
return result;

value[0] += 1; // Real part
if (isComplex)
value[l] += 1; // Imag part

if (result = MDSetNumericWavePointValue (wavH, indices, value))
return result;

int

MDGetDPDataFromNumericWave (wavH, dPtr)

waveHndl wavH; // Handle to the wave of interest
double* dPtr; // Where to put the data

MDGetDPDataFromNumericWave stores a double-precision copy of the specified numeric

wave' s datain the memory pointed to by dPtr. dPtr must point to a block of memory that you
have allocated and which must be at least (WavePoints(wavH)* sizeof (double)) bytes or twice that
for acomplex wave.

Thisroutine is acompanion to MDStoreDPDatal nANumericWave.
The function result is zero or an error code.
See the example below for MDStoreDPDatal n(NumericWave.

359

Chapter 13 — XOPSupport Routines - Waves

360

int

MDStoreDPDataInNumericWave (wavH, dPtr)

waveHndl wavH; // Handle to the wave of interest
double* dPtr; // Pointer to the data to store

M D StoreDPDatal n(NumericWave stores the data pointed to by dPtr in the specified numeric
wave.

During the transfer, it converts the data from double precision to the numeric type of the wave.
The conversion is done on-the-fly and the data pointed to by dPtr is not changed.

When storing into an integer wave, M DStoreDPDatal nNNumericWave truncates the value that you
are storing. If you want, you can do rounding before calling MDStoreDPDatal nANumericWave.

Thisroutine is a companion to MDGetDPDatalnNumericWave.
The function result is zero or an error code.

Numeric wave datais stored contiguously in the wave handle in one of the supported data types
(see the MakeWave routine). To access the a particular point, you need to know the number of
data points in each dimension. To find this, you must call MDGetWaveDimensions. This returns
the number of used dimensionsin the wave and an array of dimension lengths. The dimension
lengths are interpreted as follows:

dimensionSizess ROWS] Number of rowsin acolumn
dimensionSizesf COLUMNS] Number of columnsin alayer
dimensionSizes|LAY ERS] Number of layersin a chunk
dimensionSizess CHUNKS] Number of chunksin the wave

ROWS, COLUMNS, LAY ERS and CHUNKS are defined in IgorXOP.h as0, 1, 2 and 3.

The datais stored in row/column/layer/chunk order. This meansthat, as you step linearly through
memory one point at atime, you first pass the value for each row in the first column. At the end
of the first column, you reach the start of the second column. After you have passed the data for
each column in the first layer, you reach the datafor the first column in the second layer. After
you have passed the data for each layer, you reach the data for the first layer of the second chunk.
And so on.

Example

This example adds one to each element of awave of two dimensions. It illustrates the ease in
using MDGetDPDataFromNumericWave and MDStoreDPDatalnNumericWave — you don’'t need
to take into account the data type of the wave that you are accessing. However, it requires that
you make a copy of the wave data which requires more memory than the other methods.

long numDimensions;
long dimensionSizes [MAX DIMENSIONS+1] ;

Chapter 13 — XOPSupport Routines - Waves

long numRows, numColumns, numBytes;
long row, column;

int isComplex;

double* dPtr;

double* dp;

int result;

isComplex = WaveType (wavH) & NT CMPLX;

if (result = MDGetWaveDimensions (wavH, &numDimensions, dimensionSizes))
return result;
if (numDimensions != 2)
return REQUIRES 2D WAVE; // an error code defined by your XOP
numRows = dimensionSizes[0];
numColumns = dimensionSizes|[1];

numBytes = WavePoints (wavH) * sizeof (double) ; // bytes needed for copy
if (isComplex)
numBytes *= 2;
dPtr = (double*)NewPtr (numBytes) ;
if (dPtr==NULL)
return NOMEM;

if (result = MDGetDPDataFromNumericWave (wavH, dPtr)) ({
DisposePtr ((Ptr)dPtr) ;
return result;

}

dp = dPtr;
for (column=0; column<numColumns; column++) {
for (row=0; row<numRowS; YroOw++) {

*dp++ += 1; // real part
if (isComplex)
*dp++ += 1; // imag part

}

if (result = MDStoreDPDatalnNumericWave (wavH, dPtr)) {
DisposePtr ((Ptr)dPtr) ;
return result;

}

DisposePtr ((Ptr)dPtr) ;

361

Chapter 13 — XOPSupport Routines - Waves

362

int

FetchNumericValue (type, dataStartPtr, index, wvalue)

int type; // Igor numeric data type

char* dataStartPtr; // Pointer to start of wave data
long index; // Point number index

double value[2]; // Point wvalue is returned here

Returns the value of one element of data of the specified type. The returned value is always
double precision floating point.

type is an Igor numeric type (see the MakeWave routine).

dataStartPtr pointsto the start of the numeric data.

index is an index in point numbers from dataStartPtr to the point of interest.
Thereal part of the value of specified point isreturned in valug/0].

If the datais complex, the imaginary part of the value of specified point isreturned in valug[1]. If
the datais not complex, value[1] is undefined.

FetchNumericValueis alow-level routine used by MDGetNumericWavePointValue. It treats the
wave as alinear array, ignoring its dimensionality. Normally, you will have no need to use it
directly. However, advanced users may find it useful. It has the ability to convert from any Igor
numeric data type to double precision.

Thisroutine is acompanion to StoreNumericVaue.

The function result is zero or an error code.

int

StoreNumericValue (type, dataStartPtr, index, value)

int type; // Igor numeric data type

char* dataStartPtr; // Pointer to start of wave data
long index; // Point number index

double value[2]; // Point value to be stored

Stores the specified value using the specified numeric type.

type is an Igor numeric type (see the MakeWave routine).

dataStartPtr pointsto the start of the numeric data.

index is an index in point numbers from dataStartPtr to the point of interest.
Y ou should passin value[0] the real part of the value.

If the datais complex, you should pass the complex part in value[1]. If the datais not complex,
StoreNumericValue ignores value[1].

Chapter 13 — XOPSupport Routines - Waves

StoreNumericVaueis alow-level routine used by MDSetNumericWavePointValue. It treats the
wave as alinear array, ignoring its dimensionality. Normally, you will have no need to use it
directly. However, advanced users may find it useful. It has the ability to convert from any Igor
numeric data type to double precision.

This routine is a companion to FetchNumericValue.

The function result is zero or an error code.

int

MDGetTextWavePointValue (wavH, indices, textH)

waveHndl wavH; // Handle to the wave of interest
long indices[MAX DIMENSIONS] ; // Identifies the point of interest
Handle textH; // Value returned here

Returns viatextH the value of a particular element in the specified wave.

Thevaueisreturned in the textH handle, which you must allocate before calling
MDGetTextWavePointValue. Any previous contents of textH are overwritten. textH isyoursto
dispose when you are finished with it.

If the wave is not a text wave, returns an error code and does not alter textH.
indicesis an array of dimension indices. For example, for a 3D wave:
indices[0] should contain the row number
indices[1] should contain the column number
indiceq[2] should contain the layer number
Thisroutine ignores indices for dimensions that do not exist in the wave.
The function result is 0 or an error code.

On output, if thereis no error, textH contains a copy of the charactersin the specified wave
element. An element in an Igor text wave can contain any humber of characters, including zero.
Therefore, the handle can contain any number of characters. Igor text waves can contain any
characters, including control characters. No characters codes are considered illegal.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handle and a C String on page 321. If you pass the handle
back to Igor, you must remove the null terminator and unlock the handle.

See the example below for MDSetTextWavePointValue.

363

Chapter 13 — XOPSupport Routines - Waves

int

MDSetTextWavePointValue (wavH, indices, textH)

waveHndl wavH; // Handle to the wave of interest
long indices [MAX DIMENSIONS] ; // Identifies the point of interest
Handle textH; // Value to store in wave

Transfers the charactersin textH to the specified point in the specified wave. The contents of
textH is not altered.

If the wave is not a text wave, returns an error code.

indicesis an array of dimension indices. For example, for a 3D wave:
indices[0] should contain the row number
indices[1] should contain the column number
indiceq[2] should contain the layer number

This routine ignores indices for dimensions that do not exist in the wave.

A point in an Igor text wave can contain any number of characters, including zero. Therefore, the
handle can contain any number of characters. Igor text waves can contain any characters,
including control characters. No characters codes are considered illegal.

The text in the handle must not be null terminated. If you have put a null terminator in the handle,
remove it before calling MDSetTextWavePointValue.

After calling MDSetTextWavePointVal ue, the handle is still yours so you should dispose it when
you no longer need it.

The function result is O or an error code.
Example

This example adds an asterisk to each element of awave of two dimensions. It illustrates the ease
of using MDGetTextWavePointVa ue and MDSetTextWavePointValue.

long numDimensions;

long dimensionSizes [MAX DIMENSIONS+1];
long numRows, numColumns;

long row, column;

long indices [MAX DIMENSIONS] ;

Handle textH;

int result;

if (result = MDGetWaveDimensions (wavH, &numDimensions, dimensionSizes))
return result;
if (numDimensions != 2)
return REQUIRES 2D WAVE; // an error code defined by your XOP
numRows = dimensionSizes [ROWS] ;

364

Chapter 13 — XOPSupport Routines - Waves

numColumns = dimensionSizes [COLUMNS] ;
textH = NewHandle (0L) ;
if (textH == NULL)

return NOMEM;

MemClear (indices, sizeof (indices)) ;
for (column=0; column<numColumns; column++) {

indices[1l] = column;
for (row=0; row<numRows; row++) {
indices[0] = row;
if (result = MDGetTextWavePointValue (wavH, indices, textH))
break;

if (PtrAndHand("*", textH, 1)) {
result = NOMEM;
break;

if (result = MDSetTextWavePointValue (wavH, indices, textH))
break;

}
}

DisposeHandle (textH) ;

int

GetTextWaveData (waveH, mode, textDataHPtr)

waveHndl waveH; // Handle to the wave of interest

int mode; // Determines format of returned data
Handle* textDataHPtr; // Data is returned here

Returns all of the text for the specified text wave viatextDataHPtr.

NOTE: Thisroutineisfor advanced programmers who are comfortable with pointer arithmetic
and handles. Less experienced programmers should use MDGet TextWavePointVaue
to get the wave text values one at atime.

If the function result is O then *textDataHPtr is a handle that you own. When you are finished,
dispose of it using DisposeHandle.

In the event of an error, the function result will be non-zero and * textDataHPtr will be NULL.

The returned handle will contain the text for all of the wave's elementsin one of severa formats
explained below. The format depends on the mode parameter.

Modes 0 and 1 use a null byte to mark the end of a string and thus will not work if O is considered
to be alegal character value.

365

Chapter 13 — XOPSupport Routines - Waves

M ode

Mode=0

Mode=1

Mode=2

Data Format

The returned handle contains one C string (null-terminated) for each element of
the wave.

Example:

"Zero"<null>
"One"<null>
"Two"<null>

The returned handle contains alist of 32-bit offsetsto strings followed by the
string data. Thereis one extra offset which is the offset to where the string
would be for the next element if the wave had one more element.

Thetext for each element in the wave is represented by a C string (null-
terminated).

Example:

<Offset to "Zero">
<Offset to "One'"s>
<Offset to "Two">
<Extra offset>
"Zero"<null>
"One"<null>
"Two"<null>

The returned handle contains alist of 32-bit offsetsto strings followed by the
string data.

The text for each element in the wave is not null-terminated.
Example:

<Offset to "Zero"s>
<Offset to "One">
<Offset to "Two">
<Extra offsets>

n Zeroll

"OI'J.e n

”TWO n

366

Using modes 1 and 2, you can determine the length of element i by subtracting offset i from

offset i+1.

Y ou can convert the offsets into pointers to strings by adding ** textDataHPtr to each of the
offsets. However, since the handle in theory can be relocated in memory, you should lock the
handle before converting to pointers and unlock it when you are done with it.

Chapter 13 — XOPSupport Routines - Waves

For the purposes of GetTextWaveData, the wave is treated as a 1D wave regardless of its true
dimensionality. If waveH a 2D text wave, the data returned via textDataHPtr isin column-major
order. This means that the data for each row of the first column appears first in memory, followed
by the data for the each row of the next column, and so on.

Returns O or an error code.
For an example using this routine, see TestGetAndSetTextWaveDatain XOPWaveA ccess.c.

Added for Igor Pro 5.04. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

int

SetTextWaveData (waveH, mode, textDataHPtr)

waveHndl waveH; // Handle to the wave of interest

int mode; // Determines format of returned data
Handle textDataH; // Data is passed to Igor here

Sets all of thetext for the specified text wave according to textDataH.

NOTE: Thisroutineisfor advanced programmers who are comfortable with pointer arithmetic
and handles. Less experienced programmers should use MDSetTextWavePointValue to
get the wave text values one at atime.

WARNING: If you pass inconsistent data in textDataH you will cause Igor to crash.

SetTextWaveData can not change the number of pointsin the text wave. Therefore the datain
textDataH must be consistent with the number of pointsin waveH. Otherwise a crash will occur.

Also, when using modes 1 or 2, the offsets must be correct. Otherwise a crash will occur.

Crashes caused by inconsistent data may occur at unpredictable times making it hard to trace it to
the problem. So triple-check your code.

Y ou own the textDataH handle. When you are finished with it, dispose of it using DisposeHandle.

The format of textDataH depends on the mode parameter. See the documentation for
GetTextWaveData for a description of these formats.

Modes 0 and 1 use a null byte to mark the end of a string and thus will not work if O is considered
to be alegal character value.

Returns O or an error code.
For an example using this routine, see TestGetAndSetTextWaveDatain X OPWaveA ccess.C.

Added for Igor Pro 5.04. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

367

Chapter 13 — XOPSupport Routines - Variables

368

Routines for Accessing Variables

These routines alow you to create or get or set the value of Igor numeric and string variables.

Most of the routines listed in this section deal with global variablesin the current datafolder. The
exceptions are GetNVAR, SetNVAR, GetSVAR and SetSVAR which are used in conjunction
with fieldsin Igor Pro structures.

In addition to the routines in this section, you can use GetDataFol derObject and
SetDatalol derObject to access global variables.

The routines in this section can aso be used to create, set and read macro-local variables. Since
macro programming is deprecated, we recommend that you use these routines to deal with global
variables only. Where appropriate the routines have a parameter that allows you to specify that
you want to deal with global variables.

Routines that deal with variables used by Operation Handler-based external operations are
described in the section Operation Handler Routines on page 329.

To set file loader output variables, see Routinesfor File-L oader XOPs on page 426.

int

Variable (varName, varType)

char* varName; // C string containing name of variable
int varType; // Data type of variable

Creates an Igor numeric or string variable in the current data folder.
Thefunction result is O if it was able to make the variable or an Igor error code if not.

If varTypeis O, Igor makes astring variable. If it isNT_FP64, it makes anumeric variable. If itis
(NT_FP64 | NT_CMPLX), it makes a complex numeric variable.

Variable can not create alocal variable in a user-defined function. However, it can create alocal
variable in amacro. Since it is usually undesirable for your XOP to behave differently depending
on how it is called, you should generally avoid creating macro local variables.

If amacro isrunning when Variableis called, the variable that is created islocal to that macro.
Y ou can force the variable to be global by using the VAR_GLOBAL flag which isdefined in
IgorXOP.h. For example:

static int
Test (void)

{

// These will always create global variables even if called from a macro.

Chapter 13 — XOPSupport Routines - Variables

Variable ("globalNumericVar", NT FP64 | VAR _GLOBAL) ;
Variable ("globalStringVar", 0 | VAR _GLOBAL) ;

}

Prior to Igor Pro 5, the Variable function was used to create output variables from external
operations, analogousto V_flag or S_fileName. When programming for Igor Pro 5 or later, you
should use Operation Handler (see page 151) to implement your external operation. Operation
Handler will create output variables for you so you should not use Variable for that purpose.

int

FetchNumVar (varName, doublePtrl, doublePtr2)

char* varName; // C string containing name of variable
double* doublePtrl; // Receives contents of real part of variable
double* doublePtr2; // Receives contents of imag part of variable

Returns the value of the named Igor numeric variable in the current data folder.
Returns -1 if the variable does not exist or the numeric type of the variable if it does.

The numeric type will be either NT_FP64 (double-precision) or (NT_FP64 | NT_CMPLX)
(double-precision, complex).

If the variable is not complex, the value returned through doublePtr2 is undefined but you still
must pass in a pointer to avalid double because some versions of Igor will accessit even if the
Igor variable is not complex.

int

StoreNumVar (varName, doublePtrl, doublePtr2)

char* varName; // C string containing name of variable
double* doublePtrl; // Points to value to store in real part
double* doublePtr2; // Points to value to store in imag

Sets the value of the named Igor numeric variable in the current data folder.
Returns -1 if the variable does not exist or the numeric type of the variable if it does.

The numeric type will be either NT_FP64 (double-precision) or (NT_FP64 | NT_CMPLX)
(double-precision, complex).

If the variable is not complex, the value pointed to by doublePtr2 does not matter but it must
point to avalid double variable because some versions of Igor will accessit even if the Igor
variable is not complex.

369

Chapter 13 — XOPSupport Routines - Variables

370

int

FetchStrVar (varName, stringPtr)

char* varName; // C string containing name of string
char* stringPtr; // Receives contents of string

Fetches the contents of the named Igor string variable in the current data folder.

The function result is 0 if it was able to fetch the string or an Igor error code if the string variable
does not exist.

stringPtr should point to an array of 256 characters.

FetchStrvar will never return more than 255 characters. If you want to access any characters
beyond the first 255, use FetchStrHandle instead of FetchStrVar.

int

StoreStrVar (varName, stringPtr)

char* varName; // C string containing name of string
char* stringPtr; // C string to store in string variable

Sets the contents of the named Igor string variable in the current data folder.

The function result is O if it was able to store the string or an Igor error code if the string variable
does not exist.

Thereisno limit to the length of the C string pointed to by stringPtr.

Handle
FetchStrHandle (varName)
char* varName; // C string containing name of string

Returns the handle containing the text for the named Igor string variable in the current data
folder.

Returns NULL if there is no such string variable.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handleand a C String on page 321.

Y ou must not dispose of or otherwise modify this handle since it belongsto Igor.

Y ou must use the handle immediately and then not refer to it again since Igor will disposeit if the
user killsthe string variable.

Chapter 13 — XOPSupport Routines - Variables

int

SetIgorIntVar (numVarName, value, forceGlobal)

char* numVarName; // Name of the Igor numeric variable to set
long value; // Value to set it to

int forceGlobal; // Non-zero to create a global variable

Sets an Igor double-precision numeric variable in the current data folder to an integer value after
creating it, if necessary.

The function result is O or an error code.

If the named numeric variable already exists, SetlgorintVar just setsit. If it does not exist, it
createsit and then setsit. In this case, it will create aglobal variable if forceGlobal is non-zero. If
forceGlobal is zero, the variable will be local if amacroisrunning or global if not.

SetlgorIntVar can not create alocal variable in a user-defined function. Sinceit is usually
undesirable for your XOP to behave differently depending on how it is called, you should
generally avoid creating macro local variables.

In the event of a name conflict with awave or string variable in the same scope, SetlgorintVar
will return an error.

Prior to Igor Pro 5, the SetlgorIntVar function was used to create output variables from external
operations, analogousto V_flag. When programming for Igor Pro 5 or later, you should use
Operation Handler (see page 151) to implement your external operation. Operation Handler will
create output variables for you so you should not use SetlgorintVar for that purpose.

371

Chapter 13 — XOPSupport Routines - Variables

372

int

SetIgorFloatingVar (numVarName, valuePtr, forceGlobal)

char* numVarName; // Name of the Igor numeric variable to set
double* valuePtr; // Pointer to double value to set it to

int forceGlobal; // Non-zero to create a global variable

Sets an Igor double-precision numeric variable in the current data folder to a floating-point value
after creating it, if necessary.

The function result is 0 or an error code.

If the named numeric variable already exists, SetlgorFloatingVar just setsit. If it does not exigt, it
createsit and then setsit. In this case, it will create aglobal variable if forceGlobal is non-zero. If
forceGlobal is zero, the variable will be local if amacro is running or global if not.

SetlgorFloatingVar can not create alocal variable in a user-defined function. Sinceit is usualy
undesirable for your XOP to behave differently depending on how it is called, you should
generaly avoid creating macro local variables.

In the event of a name conflict with awave or string variable in the same scope,
SetlgorFloatingVar will return an error.

Prior to Igor Pro 5, the SetlgorFloatingV ar function was used to create output variables from
external operations, analogousto V_flag. When programming for Igor Pro 5 or later, you should
use Operation Handler (see page 151) to implement your external operation. Operation Handler
will create output variables for you so you should not use SetlgorFloatingVar for that purpose.

int

SetIgorComplexVar (numVarName, realPtr, imagPtr, forceGlobal)

char* numVarName; // Name of the Igor complex numeric variable to set
double* realPtr; // Pointer to real part of value to set it to
double* imagPtr; // Pointer to imaginary part of value to set it to
int forceGlobal; // Non-zero to create a global variable

Sets an Igor double-precision, complex numeric variable in the current data folder to a complex
floating-point value after creating it, if necessary.

The function result is O or an error code.

If the named numeric variable aready exists, SetlgorComplexVar just setsit. If it does not exist,
it createsit and then setsit. In this case, it will create aglobal variable if forceGlobal is non-zero.
If forceGlobal is zero, the variable will be local if amacro is running or global if not.

SetlgorComplexVar can not create alocal variable in a user-defined function. Since it is usually
undesirable for your XOP to behave differently depending on how it is called, you should
generally avoid creating macro local variables.

In the event of a name conflict with awave or string variable in the same scope,
SetlgorComplexVar will return an error.

Chapter 13 — XOPSupport Routines - Variables

Prior to Igor Pro 5, the SetlgorComplexVar function was used to create output variables from
external operations, analogousto V_flag. When programming for Igor Pro 5 or later, you should
use Operation Handler (see page 151) to implement your external operation. Operation Handler
will create output variables for you so you should not use SetlgorComplexVar for that purpose.

int

SetIgorStringVar (stringVarName, stringVarValue, forceGlobal)

char* stringVarName; // Name of the Igor string variable to set
char* stringVarValue; // Value to store in string variable

int forceGlobal; // Non-zero to create a global string

Sets an |gor string variable in the current data folder after creating it, if necessary.
The function result is 0 or an error code.

If the named string variable already exists, SetlgorStringVar just setsit. If it does not exist, it
createsit and then setsit. In this case, it will create aglobal string if forceGlobal is non-zero. If
forceGlobal is zero, the string will be local if amacro isrunning or global if not.

SetlgorStringVar can not create alocal variable in a user-defined function. Sinceit isusually
undesirable for your XOP to behave differently depending on how it is called, you should
generally avoid creating macro local variables.

In the event of a name conflict with awave or numeric variable in the same scope,
SetlgorStringVar will return an error.

Prior to Igor Pro 5, the SetlgorStringVar function was used to create output variables from
external operations, analogousto S_fileName. When programming for Igor Pro 5 or later, you
should use Operation Handler (see page 151) to implement your external operation. Operation
Handler will create output variables for you so you should not use SetlgorStringVar for that
purpose.

373

Chapter 13 — XOPSupport Routines - Variables

374

int

GetNVAR (nvp, realPartPtr, imagPartPtr, numTypePtr)

NVARRec* nvp; // Pointer to an NVARRec field in a structure
double* realPartPtr; // Real part of variable returned here
double* imagPartPtr; // Imaginary part of variable returned here
int* numTypePtr; // Numeric type of variable returned here

Retrieves the data and type of aglobal numeric variable referenced by an NVAR field in an Igor
Pro structure.

nvp isapointer to an NVAR field in an Igor structure. The Igor structure pointer would be passed
into the XOP as a parameter.

If GEtNV AR returns 0 then * real PartPtr will be the contents of the real part of the global variable
and *imagPartPtr will be the contents of the imaginary part of the global variable, if it is complex.

real PartPtr and imagPartPtr must each point to storage for a double whether the global variableis
complex or not.

*numTypePtr is set to the numeric type of the global. Thiswill be either NT_FP64 or (NT_FP64 |
NT_CMPLX).

Returns O or an error code.

Added for Igor Pro 5.03. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

See also NVARs and SVARs I n Structures on page 283.

int

SetNVAR (nvp, realPartPtr, imagPartPtr)

NVARRec* nvp; // Pointer to an NVARRec field in a structure
double* realPartPtr; // Real part of variable supplied here
double* imagPartPtr; // Imaginary part of variable supplied here

Sets the value of a global numeric variable referenced by an NVAR field in an Igor Pro structure.

nvp isapointer to an NVAR field in an Igor structure. The Igor structure pointer would be passed
into the XOP as a parameter.

*real PartPtr is the value to store in the real part of the global variable and *imagPartPtr isthe
value to store in the imaginary part of the global variable, if it is complex.

real PartPtr and imagPartPtr must each point to storage for a double whether the global variable is
complex or not.

Returns O or an error code.

Added for Igor Pro 5.03. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

See also NVARs and SVARs I n Structures on page 283.

Chapter 13 — XOPSupport Routines - Variables

int

GetSVAR (nvp, strHPtr)

NVARRec* nvp; // Pointer to an NVARRec field in a structure
Handle* strHPtr; // Handle for string variable returned here

Retrieves the handle for aglobal string variable referenced by an SVAR field in an Igor Pro
structure.

svp isapointer to an SVAR field in an Igor structure. The Igor structure pointer would be passed
into the XOP as a parameter.

If GetSVAR returns O then *strHPtr will be the handle for an Igor global string variable.

NOTE: *strHPtr can be NULL if the global string variable contains no characters.

NOTE: *strHPtr belongsto Igor. Do not disposeit or alter it in any way. Use this function only
to read the contents of the string.

Returns O or an error code.

Added for Igor Pro 5.03. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Seedso NVARsand SVARs | n Structures on page 283.

int

SetSVAR (nvp, strH)

NVARRec* nvp; // Pointer to an NVARRec field in a structure
Handle* strH; // Handle containing text for string variable

Sets the value of a global string variable referenced by an SVAR field in an Igor Pro structure.

svp isapointer to an SVAR field in an Igor structure. The Igor structure pointer would be passed
into the XOP as a parameter.

strH is a handle that you own. It can be NULL to set the global string variable to empty.

NOTE: Igor copies the contents of strH. Y ou retain ownership of it and must dispose it.
Returns O or an error code.

Added for Igor Pro 5.03. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

See dso NVARsand SVARs I n Structures on page 283.

375

Chapter 13 — XOPSupport Routines - Data Folders

Routines for Accessing Data Folders

Datafolders, which provide hierarchical data storage, first appeared in Igor Pro 3.0. Most simple
XOPs have no need to deal with them. For some advanced applications, being data-folder-aware
will make your X OP more powerful. See Dealing With Data Folders on page 224 for an
orientation to data folder use in XOPs.

Many of these routines require that you pass a data folder handle to Igor. Y ou obtain a data folder
handle from Igor using one of these routines:

GetDataFolderAndName GetDataFolder GetRootDataFolder
GetCurrentDataFolder GetNamedDataFolder GetDataFolderByIDNumber
GetParentDataFolder GetIndexedChildDataFolder GetDataFolderObject
GetWavesDataFolder NewDataFolder

Data folder handles belong to Igor and your X OP must not delete or directly modify them.

The GetDataFolder and GetDataFolderAndName routines are used to implement the command
parsing part of a data-fol der-aware external operation. These are described under Routines for
Par sing Commands on page 329.

int

GetDataFolderNameOrPath (dataFolderH, flags, dataFolderPathOrName)
DataFolderHandle dataFolderH;

int flags;

char dataFolderPathOrName [MAXCMDLEN+1] ;

Given a handle to a data folder, returns the name of the data folder if bit O of flagsis zero or afull
path to the data folder, including atrailing colon, if bit O of flagsis set.

If bit 1 of flagsis set, Igor returns the dataFolderPathOrName with single quotes if they would be
needed to use the name or path in Igor’s command line. If bit 1 of flagsis zero,
dataFol derPathOr-Name will have no quotes.

Set bit 1 of flagsif you are going to use the path or name in a command that you submit to Igor
viathe XOPCommand or X OPSilentCommand callbacks. Clear bit 1 of flags for other purpose if
you want an unquoted path or name.

All other bits of the flags parameter are reserved; you must set them to zero.
If dataFolderH is NULL, it uses the current data folder.

A datafolder name can be up to MAX_OBJ NAME characters while afull or partial path can be
up to MAXCMDLEN characters. To be safe, allocate MAXCMDLEN+1 characters for
dataFol derPath-OrName.

The function result is 0 or error code.

376

Chapter 13 — XOPSupport Routines - Data Folders

int

GetDataFolderIDNumber (dataFolderH, IDNumberPtr)
DataFolderHandle dataFolderH;

Long* IDNumberPtr;

Returns the unique 1D number for the data folder via I DNumberPtr.
If dataFolderH isNULL, it uses the current data folder.

Each data folder has a unique ID number that stays the same as long as the data folder exists,
evenif it isrenamed or moved. If you need to reference a data folder over a period of time during
which it could be killed, then you should store the data folder’s ID number.

Given the ID number, you can call GetDataFolderBylDNumber to check if the data folder till
exists and to get a handleto it.

The ID number isvalid until the user creates a new Igor experiment or quits Igor. ID numbers are
not remembered from one running of Igor to the next.

The function result is O or error code.
int
GetDataFolderProperties (dataFolderH, propertiesPtr)

DataFolderHandle dataFolderH;
long* propertiesPtr;

Returns the bit-flag properties of the specified data folder.
If dataFolderH is NULL, it uses the current data folder.

At present, Igor does not support any properties and this routine will alwaysreturn 0 in
*propertiesPtr. In the future, it might support properties such as “locked”.

The function result is O or error code.
int
SetDataFolderProperties (dataFolderH, propertiesPtr)

DataFolderHandle dataFolderH;
long* propertiesPtr;

Sets the bit-flag properties of the specified data folder.
If dataFolderH is NULL, it uses the current data folder.

At present, Igor does not support any properties and this routine does nothing. In the future, it
might support properties such as “locked”.

The function result is O or error code.

377

Chapter 13 — XOPSupport Routines - Data Folders

378

int

GetDataFolderListing(dataFolderH, optionsFlag, listingH)
DataFolderHandle dataFolderH;

int optionsFlag; // Specifies what is to be listed
Handle listingH; // Listing text is stored in handle.

Returns vialistingH alisting of the contents of the specified data folder.

Y ou must create listingH and dispose it when you no longer need it. Any contentsin listingH are
replaced by the listing.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handleand a C String on page 321.

If dataFolderH is NULL, it uses the current data folder.
optionsHag determines what isin the listing.

If bit O of optionsFlag is set, alist of subfoldersisincluded:
"FOLDERS : <subFolder0>, <subFolderl>. .., <subFolderN>; <CR>"

If bit 1 of optionsFlag is set, alist of wavesisincluded:
"WAVES : <waveNameO0>, <waveNamel>. .., <waveNameN>; <CR>"

If bit 2 of optionsHag is set, alist of numeric variablesis included:
"VARIABLES:<varNameO>, <varNamel>. .., <varNameN>; <CR>"

If bit 3 of optionsFlag is set, alist of string variablesis included:
"STRINGS:<strVarNameO>, <strVarNamel>...,<strVarNameN>; <CR>"

All other bits are reserved and should be set to zero.

Names in the listing of waves, variables and strings are quoted with single quotes if thisis
necessary to make them suitable for use in the Igor command line.

The function result is O or error code.

Example

DataFolderHandle dataFolderH;
Handle listingH;
int result;

listingH = NewHandle (0L) ;

if (listingH == NULL)
return NOMEM;

if (result = GetRootDataFolder (&dataFolderH)
return result;

if (result = GetDataFolderListing(dataFolderH, 15, &listingH))
return result;

<Use contents of listingH>

DisposeHandle (listingH) ;

Chapter 13 — XOPSupport Routines - Data Folders

int
GetRootDataFolder (refNum, rootDataFolderHPtr)
long refNum; // Not used - always pass zero.

DataFolderHandle* rootDataFolderHPtr; // Root returned here.
Returns a handle to the root data folder in * rootDataFolderHPtr.

Data folder handles belong to Igor so you should not modify or dispose them.

The function result is O or error code.

int

GetCurrentDataFolder (currentDataFolderHPtr)
DataFolderHandle* currentDataFolderHPtr; // Current returned here.

Returns a handle to the current data folder in * currentFolderHPtr.
Datafolder handles belong to Igor so you should not modify or dispose them.

The function result is 0 or error code.

int
SetCurrentDataFolder (dataFolderH)
DataFolderHandle dataFolderH;

Sets the current data folder to the data folder referenced by dataFolderH.

The function result is O or error code.

int

GetNamedDataFolder (startingDataFolderH, dataFolderPath, dataFolderHPtr)
DataFolderHandle startingDataFolderH;

char dataFolderPath [MAXCMDLEN+1] ;

DataFolderHandle* dataFolderHPtr;

Returns in * dataFolderHPtr the data folder specified by startingDataFolderH and dataFolderPath.
Data folder handles belong to Igor so you should not modify or dispose them.

dataFolderPath can be an absolute path (e.g., "root:FolderA:FolderB:"), arelative path (e.g.,
":FolderA:FolderB:") or adatafolder name (e.g., "FolderA"). It can also bejust ":", aform of
relative path that refers to the starting data folder.

If dataFolderPath is an absolute path then startingDataFolderH is immaterial - you can pass any
datafolder handle or NULL. An absolute path must always start with "root:". It should include a
trailing colon but GetNamedDataFolder tolerates an absol ute path without the trailing colon. Note
that "root" is an not an absolute path whereas "root:" is.

379

Chapter 13 — XOPSupport Routines - Data Folders

380

If dataFolderPath is arelative path or a data folder name then dataFolderPath is relative to
startingDataFolderH. However, if startingDataFolderH is NULL then dataFolderPath isrelative to
the current folder.

Passing "root" as dataFolderPath will not find the root data folder because "root" is a data folder
name. Igor will try to find adata folder named "root" relative to the current data folder. The
actual root data folder is never relative to any datafolder so it can not be found thisway. Use
"root:" instead.

Liberal namesin dataFolderPath can be quoted or not. Both "root:Folder.1" and "root:'Folder.1"
are acceptable.

The function result is 0 or error code.

Example

DataFolderHandle rootH, dataFolderH;
int result;

if (result = GetRootDataFolderHandle (0, &rootH))
return result;

if (result = GetNamedDataFolder (rootH, ":Packages:", &dataFolderH))
return result;

int

GetDataFolderByIDNumber (IDNumber, dataFolderHPtr)
long IDNumber;

DataFolderHandle* dataFolderHPtr;

Returns via * dataFolderHPtr the data folder handle associated with the specified ID number.
Data folder handles belong to Igor so you should not modify or dispose them.

The function result isO if OK or anon-zero error code if the data folder doesn't exist, which
would be the case if the data folder were killed since you got its ID number.

Each data folder has a unique ID number that stays the same as long as the data folder exists. You
can get the ID number for a data folder using GetDataFol derl DNumber.

If you need to reference a data folder over a period of time during which it could be killed, then
you should store the datafolder’s ID number. Given the ID number, GetDataFolderByl DNumber
tellsyou if the data folder still exists and, if it does, gives you the data folder handle.

The ID number isvalid until the user creates a new Igor experiment or quits Igor. ID numbers are
not remembered from one running of lgor to the next.

Chapter 13 — XOPSupport Routines - Data Folders

int

GetParentDataFolder (dataFolderH, parentFolderHPtr)
DataFolderHandle dataFolderH;

DataFolderHandle* parentFolderHPtr;

Returns the parent of the specified datafolder via* parentFolderHPtr.
Data folder handles belong to Igor so you should not modify or dispose them.
If dataFolderH isNULL, it uses the current data folder.

Passing the root data folder as dataFolderH is an error. In this case GetParentDataFolder returns
NO_PARENT_DATAFOLDER.

The function result is 0 or error code.
int
GetNumChildDataFolders (parentDataFolderH, numChildDataFolderPtr)

DataFolderHandle parentFolderH;
long* numChildDataFolderPtr;

Returns the number of child data folders in the specified parent data folder.
If parentDataFolderH is NULL, it uses the current data folder.
The function result is 0 or error code.

int

GetIndexedChildDataFolder (parentDataFolderH, index,
childDataFolderHPtr)

DataFolderHandle parentFolderH;

long index; // O-based index.

DataFolderHandle* childDataFolderHPtr;

Returns via childDataFolderHPtr a handle to the child data folder specified by the index.
Data folder handles belong to Igor so you should not modify or dispose them.

index starts from O.

If parentDataFolderH is NULL, it uses the current data folder.

The function result is O or error code.

int

GetWavesDataFolder (wavH, dataFolderHPtr)

waveHndl wavH;
DataFolderHandle* dataFolderHPtr;

Returns via dataFolderHPtr the handle to the data folder containing the specified wave.

381

Chapter 13 — XOPSupport Routines - Data Folders

382

Data folder handles belong to Igor so you should not modify or dispose them.

The function result is 0 or error code.

int

NewDataFolder (parentFolderH, newDataFolderName, newDataFolderHPtr)
DataFolderHandle parentFolderH;

char newDataFolderName [MAX OBJ NAME+1] ;
DataFolderHandle* newDataFolderHPtr;

Creates a new data folder in the data folder specified by parentFolderH.
parentFolderH can be ahandle to an Igor datafolder or NULL to use the current data folder.

On output, * newDataFolderHPtr will contain a handle to the new datafolder or NULL if an error
occurred.

Datafolder handles belong to Igor so you should not modify or dispose them.

NewDataFolder does not change the current datafolder. If you want to make the new folder the
current folder, call SetCurrentDataFolder after NewDataFolder.

The function result is O or error code.
int

KillDataFolder (dataFolderH)
DataFolderHandle dataFolderH;

Kills an existing data folder, removing it and its contents, including any child data folders, from
memory.

dataFolderH is a handle to an existing Igor data folder or NULL to use the current data folder.

Y ou will receive an error and the data folder will not be killed if it contains waves or variables
that arein use (e.g., displayed in tables or graphs).

If you kill the current data folder or a datafolder that contains the current data folder, Igor will set
the current data folder to the parent of the killed data folder.

If you kill the root datafolder, its contents will be killed but not the root data folder itself.

NOTE: Onceadatafolder issuccessfully killed, dataFolderH is no longer valid. Y ou should
not reference it for any purpose.

The function result is O or error code.

Chapter 13 — XOPSupport Routines - Data Folders

int
DuplicateDataFolder (sourceDataFolderH, parentDataFolderH, newDataFolderName)
DataFolderHandle sourceDataFolderH;

DataFolderHandle parentDataFolderH;

char newDataFolderName [MAX OBJ NAME+1] ;

Creates a clone of the source data folder. The contents of the destination will be clones of the
contents of the source.

sourceDataFolderH is a handle to the data folder to be duplicated or NULL to use the current data
folder.

parentDataFolderH is a handle to the data folder in which the new datafolder is to be created or
NULL to use the current data folder.

newDataFolderName is the name to be given to the new data folder.

The function result is 0 or error code.

int

MoveDataFolder (sourceDataFolderH, newParentDataFolderH)

DataFolderHandle sourceDataFolderH;
DataFolderHandle newParentDataFolderH;

Moves the source data folder into a new location in the hierarchy.
It isan error to attempt to move a parent folder into itself or one of its children.

sourceDataFolderH is a handle to the data folder to be moved or NULL to use the current data
folder.

newParentDataFolderH is a handle to the data folder in which the source data folder isto be
moved or NULL to use the current data folder.

The function result is 0 or error code.
int
RenameDataFolder (dataFolderH, newName)

DataFolderHandle dataFolderH;
char newName [MAX OBJ NAME+1] ;

Renames the data folder.
dataFolderH is ahandle to the data folder to be renamed or NULL to use the current data folder.

The function result is 0 or error code.

383

Chapter 13 — XOPSupport Routines - Data Folders

384

int

GetNumDataFoldersObjects (dataFolderH, objectType, numObjectsPtr)
DataFolderHandle dataFolderH;

int objectType;

long* numObjectsPtr;

Returns via numObjectsPtr the number of objects of the specified type in the specified data
folder.

If dataFolderH isNULL, it uses the current data folder.

objectType is one of the following:

WAVE_OBJECT for waves
VAR_OBJECT for numeric variables
STR_OBJECT for string variables

To find the number of datafolders within the data folder, use GetNumChildDataFolders.

int
GetIndexedDataFolderObject (dataFolderH, objectType, index, objectName, vp)
DataFolderHandle dataFolderH;

int objectType;

long index;

char objectName [MAX OBJ NAME+1];

DataObjectValuePtr vp;

Returns information that allows you to access an object of the specified type in the specified data
folder.

index starts from O.
If dataFolderH is NULL, it uses the current data folder.
objectTypeis one of the following:

WAVE_OBJECT for waves
VAR_OBJECT for numeric variables
STR_OBJECT for string variables

For information on a data folder, use GetlndexedChildDataFolder.
Y ou can pass NULL for objectName if you don’t need to know the name of the object.
If you do not want to get the value of the object, pass NULL for vp.

If vpisnot NULL, then it is apointer to a DataObjectValue union, defined in IgorX OP.h.
GetlndexedDatalol derObject sets fields depending on the object’ s type:

Chapter 13 — XOPSupport Routines - Data Folders

WAVE_OBJECT Sets vp->wavH field to wave' s handle.
VAR_OBJECT Stores numeric variable’ svalue in vp->nv field.
STR_OBJECT Sets vp->strH field to strings's handle.

The handles returned via the wavH and strH fields belong to Igor. Do not modify or dispose
them.

The function result is O or error code.

int

GetDataFolderObject (dataFolderH, objectName, objectTypePtr, vp)
DataFolderHandle dataFolderH;

char objectName [MAX_OBJ_NAME+1] ;

int* objectTypePtr;
DataObjectValuePtr vp;

Returns information about the named object in the specified data folder.

The main utility of this routine will be for getting access to anumeric or string variablein a
specific datafolder.

If dataFolderH isNULL, it uses the current data folder.
On output, if the specified object exists, * objectTypePtr will be one of the following:

WAVE_OBJECT Object isawave.

VAR _OBJECT Object isanumeric variable.
STR_OBJECT Object isastring variable.
DATAFOLDER_OBJECT Object isadatafolder.

If you do not want to get the value of the object, pass NULL for vp.

If vpisnot NULL, then it is apointer to a DataObjectValue union, defined in IgorX OP.h.
GetlndexedDataFol derObject sets fields depending on the object’ s type:

WAVE_OBJECT Sets vp->wavH field to wave' s handle.

VAR _OBJECT Stores numeric variable' svalue in vp->nv field.
STR_OBJECT Sets vp->strH field to strings's handle.
DATAFOLDER_OBJECT Sets vp->dfH field to datafolder’ s handle.

The handles returned via the wavH, strH and dfH fields belong to Igor. Do not modify or dispose
them. Remember also that stringsin handles do not contain a null terminator (they are not C
strings). To find the number of characters, call GetHandleSize on the handle.

The function result is 0 or error code if there is no object with the specified name.

385

386

Chapter 13 — XOPSupport Routines - Data Folders

Example

DataObjectValue v;
int objectType;
waveHndl wavH;

Handle strH;

double numVarValue;
DataFolderHandle dfH;
int err;

if (err = GetDataFolderObject (dfH, "AnObject",

return err;
switch (objectType)

case WAVE OBJECT:
wavH = v.wavH;
<Do something with wavH>;
break;

case VAR OBJECT:
numVarValue = v.nv.realValue;
<Do something with numVarValues;
break;

case STR_OBJECT:
strH = v.strH;
<Do something with strH>;
break;

case DATAFOLDER OBJECT:
dfH = v.dfH;
<Do something with dfH>;
break;

&objectType,

&v))

Chapter 13 — XOPSupport Routines - Data Folders

int

SetDataFolderObject (dataFolderH, objectName, objectType, vp)
DataFolderHandle dataFolderH;

char objectName [MAX OBJ_ NAME+1];

int objectType;

DataObjectValuePtr vp;

Sets the value of the named object in the specified data folder.

The main utility of thisroutine will be for setting the value of anumeric or string variablein a
specific datafolder.

If dataFolderH is NULL, it uses the current data folder.

objectType must be one of the following:

WAVE_OBJECT Object isawave.
VAR_OBJECT Object isanumeric variable.
STR_OBJECT Object isastring variable.

DATAFOLDER_OBJECT Object isadatafolder.

vp isapointer to a DataObjectValue union, defined in IgorXOP.h. The action of
SetlndexedDataFol derObject depends on the object’ s type:

WAVE_OBJECT Does nothing.
VAR _OBJECT Sets numeric variable to the value in vp->nv field.
STR_OBJECT Sets the string variable to contain the charactersin vp->strH.

DATAFOLDER_OBJECT Does nothing.

When setting the value of a string variable, Igor just copies the data from the handle. The handle
isyoursto dispose (if you created it). Remember also that stringsin handles do not contain a null
terminator (they are not C strings). Remove the null terminator if you have added one before
calling SetDataFol derObject.

The function result is 0 or error code if there is no object with the specified name.

387

388

Chapter 13 — XOPSupport Routines - Data Folders

Example

DataObjectValue v;
int objectType;
waveHndl wavH;

Handle strH;

double numVarValue;
DataFolderHandle dfH;
int err;

if (err GetDataFolderObject (dfH,
return err;
switch (objectType)
case WAVE_OBJECT:
break;
case VAR OBJECT:
v.realPart += 1;
break;
case STR_OBJECT:
strH v.strH;
if (HandToHand (&strH))
return NOMEM;
(PtrAndHand ("***" gtrH,
DisposeHandle (strH) ;

return NOMEM;

if 3)) |

}

v.strH
break;

case DATAFOLDER_OBJECT:
break;

strH;

}

// Note:

err SetDataFolderObject (dfH,

if (objectType==STR_OBJECT)
DisposeHandle (strH) ;

return err;

"AnObject",

&objectType, &Vv))

Increment the numeric variable

!/

//
//

This handle belongs to Igor.
Make our own copy.

// RAppend *** to string

// Used by SetDataFolderObject.

SetDataFolderObject does nothing for waves or data folders.
"AnObject",

objectType, &v);

// Dispose our copy of handle.

Chapter 13 — XOPSupport Routines - Data Folders

int

KillDataFolderObject (dataFolderH, objectType, objectName)
DataFolderHandle dataFolderH;

int objectType;

char objectName [MAX OBJ_ NAME+1];

Kills the named object of the specified type in the specified data folder.
If dataFolderH is NULL, it uses the current data folder.

objectType is one of the following:

WAVE_OBJECT for waves
VAR_OBJECT for numeric variables
STR_OBJECT for string variables

NOTE: If you attempt to kill awavethat isin use (e.g., in agraph, table or user-defined
function) the wave will not be killed and you will receive a non-zero result code.

Igor does not check if numeric and string variables arein use. Y ou can kill anumeric or string
variable at any time without receiving an error.

The function result is O or error code.

int

DuplicateDataFolderObject (dataFolderH, objectType, objectName,
destFolderH, newObjectName, overwrite)

DataFolderHandle dataFolderH;

int objectType;

char objectName [MAX OBJ NAME+1];

DataFolderHandle destFolderH;

char newObjectName [MAX OBJ NAME+1] ;

int overwrite;

Duplicates the named object of the specified type.
If dataFolderH and/or destFolderH isNULL, it uses the current data folder.

objectType is one of the following:

WAVE_OBJECT for waves
VAR_OBJECT for numeric variables
STR_OBJECT for string variables

If the new nameisillegal you will receive a non-zero result code.
If the new nameisin use and overwrite is false, you will receive a non-zero result code.

389

Chapter 13 — XOPSupport Routines - Data Folders

390

If the new nameisin use for adifferent kind of object, you will receive a non-zero result code.

To avoid these errors, you can check and if necessary fix the new name using the CheckName,
CleanupName and UniqueName2 routines or the higher-level CreateValidDataObjectName
routine.

The function result is O or error code.

int

MoveDataFolderObject (sourceDataFolderH, objectType, objectName,
destDataFolderH)

DataFolderHandle sourceDataFolderH;

int objectType;

char objectName [MAX OBJ NAME+1];

DataFolderHandle destDataFolderH;

Moves the named object of the specified type from the source data folder to the destination data
folder.

If sourceDataFolderH is NULL, it uses the current data folder.
If destDataFolderH is NULL, it uses the current data folder.

objectType is one of the following:

WAVE_OBJECT for waves
VAR_OBJECT for numeric variables
STR_OBJECT for string variables

NOTE: If an object with the same name exists in the destination data folder, the object will not
be moved and you will receive a non-zero result code.

The function result is 0 or error code.

Chapter 13 — XOPSupport Routines - Data Folders

int

RenameDataFolderObject (dataFolderH, objectType, objectName,
newObjectName)

DataFolderHandle dataFolderH;

int objectType;

char objectName [MAX OBJ_ NAME+1];

char newObjectName [MAX OBJ NAME+1] ;

Renames the named object of the specified type in the specified data folder.
If dataFolderH isNULL, it uses the current data folder.
objectType is one of the following (defined in IgorXOP.h):

WAVE_OBJECT for waves
VAR _OBJECT for numeric variables
STR_OBJECT for string variables

NOTE: If thenew nameisillegal or in use the abject will not be renamed and you will receive
anon-zero result code.

The function result is O or error code.

391

Chapter 13 — XOPSupport Routines - Menus

392

Routines for XOPs with Menu Items

If your XOP adds one or more menu itemsto Igor then it must enable and disable them or change
them according to circumstances. It must also respond properly when its menu item is sel ected.
These routines allow you to manage your menu items.

See Chapter 8, Adding Menus and Menu Itemsfor an overview.

In dealing with menus, XOPs use Macintosh Menu Manager routines, even when running on
Windows. See Menu Manager Routines on page 232 for alist of these routines.

Routines for dealing with dialog popup menus are described under Dialog Popup M enus on page
405.

int

SetIgorMenultem(message, enable, text, param)

int message; // An Igor message code

int enable; // 1 to enable the menu item, 0 to disable it
char* text; // Pointer to a C string or NULL

long param; // Normally not used and should be 0

Enables or disables the built-in Igor menu item associated with message.
For example, if the XOP wants to enable the Copy menu item, it would call Igor as follows:
SetIgorMenultem (COPY, 1, NULL, O0);

COPY isthe event message code that would be sent by Igor if the user chose the Copy item in the
Edit menu. Event message codes are defined in XOP.h.

The text parameter will normally be NULL. However, there are certain built-in Igor menus whose
text can change. An example of thisisthe Undo item. An XOP which owns the active window
can set the Undo item as follows:

SetIgorMenultem (UNDO, 1, "Undo XOP-Specific Action", 0);

Igor will ignore the text parameter for menu items whose text is fixed, for example Copy. For
menu items whose text is variable, if the text parameter is not NULL, then Igor will set the text of
the menu item to the specified text.

The param parameter is normally not used and should be zero. Thereis currently only one case in
which it is used. If the messageis FIND, Igor needsto know if you want Find, Find Same or Find
Selected Text. It looks at the param parameter for this which should be 1, 2 or 3, respectively.

Returns 1 if there is a menu item corresponding to message or O if not. Normally you will have no
need for this return value.

Chapter 13 — XOPSupport Routines - Menus

int
ResourceToActualMenulID (resourceMenulD)
int resourceMenulD;

Given the ID of aMENU resource in the XOP' sresource fork, returns the actual menu ID of that
resource in memory.

Returns 0 if the XOP did not add this menu to Igor.

See Determining Which Menu Item Was Chosen on page 241 for a discussion of resource IDs
versus actual 1Ds.

int
ActualToResourceMenulD (menulD)
int menulD;

Given the ID of amenu in memory, returns the resource ID of the MENU resource in the XOP's
resource fork.

Returns 0 if the XOP did not add this menu to Igor.

See Determining Which Menu Item Was Chosen on page 241 for adiscussion of resource IDs
versus actua 1Ds.

int

ResourceToActualItem(igorMenulID, resourceltemNumber)
int igorMenulD;

int resourceltemNumber;

Given the ID of abuilt-in Igor menu and the number of a menu item specification in the XMI1
resource in the XOP’' s resource fork, returns the actual item number of that item in the Igor menu.

Both menu item specification numbers and menu item numbers start from one.
Returns 0 if the XOP did not add this menu item to Igor.

See Determining Which Menu Item Was Chaosen on page 241 for a discussion of resource
items versus actual items.

393

Chapter 13 — XOPSupport Routines - Menus

394

int

ActualToResourceltem(igorMenuID, actualItemNumber)
int igorMenulD;

int actualItemNumber;

Given the ID of abuilt-in Igor menu and the actual number of a menu item in the Igor menu,
returns the number of the menu item specification in the XMI1 resource in the XOP' s resource
fork for that item.

Both menu item specification numbers and menu item numbers start from one.
Returns 0 if the XOP did not add this menu item to Igor.

See Determining Which Menu Item Was Chosen on page 241 for a discussion of resource
items versus actual items.

MenuHandle
ResourceMenuIDToMenuHandle (resourceMenulID)
int resourceMenulD;

Given the ID of aMENU resource in the XOP' s resource fork, returns the menu handle for that
menu.

Returns NULL if XOP did not add this menu.

void

WMDeleteMenultems (theMenu, afterItem)

MenuHandle theMenu; // Handle to a popup menu

int afterItem; // The number of an item in the menu

Deletes al of the items after the specified item in the menu.
Item numbers start from one.

Do not call thisroutine to update the contents of a dialog popup menu item. Use
DeletePopMenultems instead.

Prior to Carbon this was called DeleteMenultems. In the Carbon API, Apple stole that name.
void

FillMenu (theMenu, itemList, itemListLen, afterItem)
MenuHandle theMenu; // Handle to a popup menu

char* itemList; // Semicolon separated list of items to add to menu
long itemListLen; // Number of characters in the itemList
int afterItem; // The number of an item in the menu

Putsthe itemsin itemList into theMenu after the specified item.

If afterltem is O, the new items go at the beginning of the menu.

Chapter 13 — XOPSupport Routines - Menus

This routine supports Macintosh menu manager meta-characters in menu items. For example, if a
"(" character appearsin theitem list, it will not be displayed in the corresponding menu item but
instead will cause the item to be disabled.

Do not call this routine to update the contents of adialog popup menu item. Use FillPopMenu
instead.

void
FillMenuNoMeta (theMenu, itemList, itemListLen, afterItem)
MenuHandle theMenu; // Handle to a popup menu

char* itemList; // Semicolon separated list of items to add to menu
long itemListLen; // Number of characters in the itemList
int afterItem; // The number of an item in the menu

Putsthe itemsin itemList into theMenu after the specified item.
If afterltem is O, the new items go at the beginning of the menu.

Unlike FillMenu, this routine does not support meta-characters in menu items. For example, if a
"(" character appearsin the item list, it will be displayed in the corresponding menu item rather
than being interpreted as disabling the item.

Do not call this routine to update the contents of a dialog popup menu item. Use FillPopMenu
instead.

int
FillWaveMenu (theMenu, match, options, afterItem)
MenuHandle theMenu; // Handle to a popup menu

char* match; // "*" for all waves or match pattern
char* options; // Options for further selection of wave
int afterItem; // The number of an item in the menu

Fills the menu with wave names sel ected based on match and options.

The added items are added after the item specified by afterltem or, if afterltemisO, at the
beginning of the menu.

Returns zero if everything went OK or an error code if the parameters were not legal or another
problem (such as out of memory) occurred.

The meaning of the match, and options parameters is the same as for the built-in Igor Wavel ist
function.

Do not call this routine to update the contents of a dialog popup menu item. Use
FillWavePopMenu instead.

In contrast to Macintosh menu manager routines, this routine does not treat any characters as
meta-characters.

395

396

Chapter 13 — XOPSupport Routines - Menus

int
FillPathMenu (theMenu, match, options, afterItem)
MenuHandle theMenu; // Handle to a popup menu

char* match; // "*" for all paths or match pattern
char* options; // Options for further selection of path
int afterItem; // The number of an item in the menu

Fills the menu with path names selected based on match.

The added items are added after the item specified by afterltem or, if afterltemis O, at the
beginning of the menu.

Returns zero if everything went OK or an error code if the parameters were not legal or another
problem (such as out of memory) occurred.

The meaning of the match parameter isthe same as for the built-in Igor PathList function.options

must be "".

Do not call this routine to update the contents of a dialog popup menu item. Use
FillPathPopMenu instead.

In contrast to Macintosh menu manager routines, this routine does not treat any characters as
meta-characters.

int
FillWinMenu (theMenu, match, options, afterItem)
MenuHandle theMenu; // Handle to a popup menu

char* match; // "*" for all windows or match pattern
char* options; // Options for further selection of windows
int afterItem; // The number of an item in the menu

Fills the menu with Igor target window names selected based on match and options.

The added items are added after the item specified by afterltem or, if afterltemisO, at the
beginning of the menu.

Returns zero if everything went OK or an error code if the parameters were not legal or another
problem (such as out of memory) occurred.

The meaning of the match parameter is the same as for the built-in Igor WinList function.

nn

If optionsis™" then all windows are selected.
If optionsis"WIN:" then just the target window is selected.
If optionsis"WIN:typeMask" then windows of the specified types are selected.

The window type masks are defined in IgorX OP.h. For example, "WIN:1" selects graph windows
only. "WIN:3" selects graphs and tables.

Chapter 13 — XOPSupport Routines - Menus

Do not call thisroutine to update the contents of a dialog popup menu item. Use
FillWindowPopMenu instead.

In contrast to Macintosh menu manager routines, this routine does not treat any characters as
meta-characters.

397

Chapter 13 — XOPSupport Routines - Dialogs

398

Routines for XOPs that Have Dialogs

These utilities assist an XOP in handling a standard modal dialog. See the samplefile
VDTDialog.c for an example of amodal dialog. See GBLoadWaveDialog.c for an example of an
Igor-style modal dialog. See Adding Dialogs on page 269 for an overview.

DialogPtr
GetXOPDialog(dialogID)
int dialogID;

Thisroutine is supported on Macintosh only. Thereis no Windows equivalent.

This utility routine works just like the Macintosh GetNewDial og toolbox routine. XOPs must call
GetXOPDialog instead of GetNewDia og.

void
ShowDialogWindow (theDialog)
XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

Shows the dialog window if it is hidden.
Usethisin place of the Mac OS ShowWindow call for platform independence.

CGrafPtr or XOP DIALOG REF
SetDialogPort (theDialog)
XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

Sets the current Graf Port on Macintosh and does nothing on Windows.

On Macintosh, SetDialogPort returns the current GrafPort before it was called. On Windows, it
returns theDialog. This routine exists solely to avoid the need for an ifdef when you need to deal
with the Macintosh current GrafPort in cross-platform dialog code.

void
DoXOPDialog(itemPtr)
short* itemPtr;

Thisroutine is supported on Macintosh only. There is no Windows equivalent.

DoXOPDialog works like the Macintosh Modal Dial og toolbox routine except that it does not take
adialog filter procedure as a parameter. Instead, it uses afilter routine that converts areturn key
or enter key pressinto aclick on the default dialog item (usually item number 1). Macintosh
XOPs must call XOPDialog (described below) or DoXOPDialog instead of calling Modal Dialog
directly.

Chapter 13 — XOPSupport Routines - Dialogs

If your dialog requires a more complex filter routine, then you will have to call XOPDialog on the
Macintosh, passing it your own filter routine.

See GBLoadWaveDiaog.c for an example.

void

XOPDialog(filterProc, itemPtr)
ModalFilterUPP filterProc;
short* itemPtr;

Thisroutine is supported on Macintosh only. Thereis no Windows equivalent.

XOPDiaog worksjust like the Macintosh Modal Dialog toolbox routine. Macintosh XOPs must
call XOPDiaog or DoXOPDialog (described above) instead of calling ModalDialog directly.

void
DisposeXOPDialog (theDialog)
DialogPtr theDialog;

Thisroutine is supported on Macintosh only. Thereis no Windows equivalent.

This utility routine works just like the Macintosh DisposeDial og toolbox routine. Macintosh
XOPs must call DisposeXOPDialog instead of DisposeDialog.

void
SetDialogBalloonHelpID (balloonHelpID)
int balloonHelpID; // ID of the balloon help resource for the dialog

On the Macintosh, sets the resource ID for the hdlg resource to be used for balloon help. If
balloonHelpID is -1, thisindicates that no balloon help isto be used.

On Windows, this routine does nothing.

Thisroutineis of limited use because balloon help is not supported on Mac OS X. See M acintosh
Balloon Help on page 295 for details.

void

GetDBox (theDialog, itemNumber, box)

XOP DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int itemNumber;

Rect* box; // Pointer to rect to receive item's rectangle

Given adialog and the item number of an item in that dialog, returns the item’ s rectangle via box.

On Macintosh, the returned rectangleisin the local coordinates of the dialog window. On
Windows, the returned rectangle isin client window coordinates.

399

Chapter 13 — XOPSupport Routines - Dialogs

400

int

GetRadBut (theDialog, itemNumber)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

Given adialog and the item number of aradio button in the dialog, returns zero if the radio button
is not turned on, non-zero if it isturned on.

void

SetRadBut (theDialog, first, last, theButton)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int first, last, theButton;

Given adialog, arange of item numbers of a group of radio buttons, and the item number for the
radio button which should be on, turns that radio button on and others in the group off.

int

ToggleCheckBox (theDialog, itemNumber)

XOP DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

Given adialog and the item number of a checkbox in that dialog, toggles the state of the
checkbox. Returns the new state (0 = off, 1 = on).

int

GetCheckBox (theDialog, itemNumber)

XOP DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

Given adialog and the item number of a checkbox in that dialog, returns the state of the checkbox
(0 = off, 1 =on).

void

SetCheckBox (theDialog, itemNumber, val)

XOP DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

int val;

Given adialog, the item number of a checkbox in that dialog, and a value to set the checkbox to
(0 = off, 1 = on), setsthe state of the checkbox.

Chapter 13 — XOPSupport Routines - Dialogs

void

HiliteDControl (theDialog, itemNumber, enable)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

int enable;

Given adialog and the item number of a control item in that dialog, enables or disables the
control and setsits highlighting to reflect its state.

The control isenabled if enable is non-zero, disabled and grayed out otherwise.

void

EnableDControl (theDialog, itemNumber)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

Given adialog and the item number of a control item in that dialog, enables the control and sets
its highlighting to reflect its enabled state.

void

DisableDControl (theDialog, itemNumber)

XOP DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

Given adialog and the item number of a control item in that dialog, disables the control and sets
its highlighting to reflect its disabled state (grays the control out).

int

GetDText (theDialog, itemNumber, theText)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int itemNumber;

char* theText; // C string to contain up to 255 chars from
item

Given adialog and the item number of an edit text or static text item in that dialog, returns the
text in the item via theText.

The string returned is a C string of up to 255 characters. theText should be big enough for 255
characters plus the null terminator.

The function result is the number of charactersin the string returned via theText.

void

SetDText (theDialog, itemNumber, theText)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int itemNumber;

char* theText; // C string containing text for dialog item

Given adialog and the item number of an edit text or static text item in that dialog, setsthe text in
the item to the contents of theText.

401

Chapter 13 — XOPSupport Routines - Dialogs

402

int

GetDInt (theDialog, itemNumber, theInt)

XOP DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int itemNumber;

int* thelnt; // Pointer to int to receive number in item

Given adialog and the item number of an edit text item in that dialog, returns the number entered
in the item viathelnt.

The function result is zero if a number was read from the item or non-zero if no number could be
read because the item had no text in it or the text was not a valid number.

void

SetDInt (theDialog, itemNumber, thelInt)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

int thelnt; // The number to put in edit text item

Given adialog and the item number of an edit text item in that dialog, sets the text in theitem to
the number in thelnt.

int

GetDLong (theDialog, itemNumber, theLong)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int itemNumber;

long* thelong; // Pointer to long to receive number in item

Given adialog and the item number of an edit text item in that dialog, returns the number entered
in the item viathelL ong.

The function result is zero if anumber was read from the item or non-zero if no number could be
read because the item had no text in it or the text was not a valid number.

void

SetDLong (theDialog, itemNumber, theLong)

XOP DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

long theLong; // The number to put in edit text item

Given adialog and the item number of an edit text item in that dialog, sets the text in theitem to
the number in thelL ong.

Chapter 13 — XOPSupport Routines - Dialogs

int

GetDDouble (theDialog, itemNumber, theDouble)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int itemNumber;

double* theDouble; // Pointer to double to receive number in item

Given adialog and the item number of an edit text item in that dialog, returns the number entered
in the item via theDouble.

The function result is zero if a number was read from the item or non-zero if no number could be
read because the item had no text in it or the text was not avalid number.

void

SetDDouble (theDialog, itemNumber, theDouble)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int itemNumber;

double* theDouble; // Pointer to double to put in edit text item

Given adialog and the item number of an edit text item in that dialog, sets the text in the item to
the number pointed to by theDouble.

void

SelEditItem(theDialog, itemNumber)

XOP DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

Selects the entire text of the edit text item specified by itemNumber.

itemNumber must be the dialog item number of an editText item. Prior to Carbon, if itemNumber
were 0, SelEditltem selected the text in the current edit text item. Thisis no longer supported.

If the dialog has no edit items, it does nothing.

Thisroutineis used to preselect an entire edit item so that the user does not have to select text
before starting to type. This behavior is desirable on Macintosh but usually is not desirable on
Windows. It isusually appropriate to cal SelMacEditltem instead of SelEditltem.

void

SelMacEditItem(theDialog, itemNumber)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int itemNumber;

Selects the entire text of the edit text item specified by itemNumber.

itemNumber must be the dialog item number of an editText item. Prior to Carbon, if itemNumber
were 0, SelMacEditltem selected the text in the current edit text item. Thisis no longer supported.

If the dialog has no edit items, it does nothing.

403

404

Chapter 13 — XOPSupport Routines - Dialogs

SelMacEdititem is the same as SelEditltem except that it does nothing on Windows.

Thisroutineis used to preselect an entire edit item so that the user does not have to select text
before starting to type. This behavior is desirable on Macintosh but usually is not desirable on
Windows. The difference stems from the fact that on Macintosh an edit text item almost always
has the focus whereas on Windows, any item can have the focus. It is recommended to call
SelMacEdititem(theDialog, 0) just before you enter the main dialog loop.

void

DisplayDialogCmd (theDialog, dlogItemNo, cmd)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int dlogItemNo; // Dialog item in which cmd is displayed
char* cmd; // The command to be displayed

Displays the command in an Igor-style dialog that has Do It, To Cmd, and To Clip buttons. See
GBLoadWaveDiaog.c for an example.

dlogltemNo is the item number of the dialog item in which the command is to be displayed. On
the Macintosh, this must be a user item. On Windows, it must be an EDITTEXT item.

void

FinishDialogCmd (cmd, mode)
char* cmd;

int mode;

You cal FinishDialogCmd at end of an Igor-style dialog.
cmd isa C string containing the command generated by the Igor-style dialog.
If modeis 1, FinishDialogCmd puts the command in Igor’s command line and starts execution.

If modeis 2, FinishDialogCmd puts the command in Igor’s command line but does not start
execution.

If modeis 3, FinishDialogCmd puts the command in the clipboard.

Liberal names of waves and data folders must be quoted before using them in the Igor command
line. Use PossiblyQuoteName when preparing the command to be executed so that your XOP
works with liberal names.

Chapter 13 — XOPSupport Routines - Dialogs

Dialog Popup Menus

These routines provide a platform-independent way to implement popup menusin dialogs. For an
overview of dialog popup menu support, see Cross-Platform Dialog Popup M enus on page 275.

void
InitPopMenus (theDialog)
XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

Call thisduring initialization of a dialog that uses popup menus before calling any other popup
menu related routines.

If you cal InitPopMenus you must also call KillPopMenus when the dialog is finished.

void
CreatePopMenu (theDialog, popupIltemNum, titleItemNum, itemList,initialItem)
XOP DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int popupIltemNum; // Dialog item number for popup menu
int titleItemNum; // Dialog item number for popup title
const char* itemList; // List of initial popup menu items

int initialltem; // Number of initially-selected item

Creates a dialog popup menu using a popup menu on Macintosh and a drop-down list combo box
on Windows. We use the term "popup menu" to mean a popup menu in a Macintosh dialog or a
combo box in a Windows dialog.

popupltemNum is the dialog item number for the popup menu. On Macintosh, this must be
specified as a control in the DITL resource and there must be a corresponding CNTL resource.
See GBLoadWave.r for an example. On Windows, it must be a COMBOBOX with the style
(CBS_DROPDOWNLIST | CBS HASSTRINGS). See GBLoadWave.rc for an example.

titleltemNum is the dialog item number for the static text title for the popup menu. Prior to
Carbon, on Macintosh this item was highlighted when the user clicked on the popup menu. As of
the Carbon, it is no longer used but must be present for backward compatibility.

itemList is a semicolon-separated list of itemsto insert into the menu. For example,
"Red;Green;Blue;".

initialltem is the 1-based number of the item in the popup menu that should beinitially selected.

In contrast to Macintosh menu manager routines, this routine does not treat any characters as
meta-characters.

405

Chapter 13 — XOPSupport Routines - Dialogs

406

MenuHandle

GetPopMenuHandle (theDialog, dlogItemNo)

XOP_DIALOG REF theDialog; // DialogPtr on Macintosh, HWND on Windows.
int dlogItemNo; // Dialog item number.

This routine is supported on Macintosh only. There is no Windows equivalent.

Returns the menu handle for the specified dialog popup menu or NULL if the specified itemis
not an initialized dialog popup menu.

Using the menu handle returned by GetPopM enuHandle, you can enable and disable items.
However, this works on Macintosh only. For cross-platform XOPs, other methods must be found.
For example, instead of disabling inappropriate items, you can remove them from the popup
menu or display an error message if they are selected.

int

ItemIsPopMenu (theDialog, dlogItemNo)

XOP_DIALOG REF theDialog; // DialogPtr on Macintosh, HWND on Windows.
int dlogItemNo; // Dialog item number.

Returns the truth that the item is a popup menu. On Windows it returns true if the item is a combo
box.

Thisroutine is used by the HandleltemHit routine in the GBL oadWaveDialog.c and VDTDialog.c
files. It allows HandleltemHit to respond to popup menu items in a different manner than other
kinds of items. Thisisthe only intended use for this routine.

int

AddPopMenultems (theDialog, dlogItemNo, itemList)

XOP_DIALOG REF theDialog; // DialogPtr on Macintosh, HWND on Windows.
int dlogItemNo; // Dialog item number.

const char* itemList; // List of items to be added.

Adds the contents of itemList to the existing dialog popup menu.
This can be called only after the popup menu item has been initialized by calling CreatePopMenu.

itemList can be asingleitem ("Red") or a semicolon-separated list of items ("Red;Green;Blue;").
Thetrailing semicolon is optional.

In contrast to Macintosh menu manager routines, this routine does not treat any characters as
meta-characters.

Chapter 13 — XOPSupport Routines - Dialogs

int

SetPopMatch(theDialog, dlogItemNo, selStr)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int dlogItemNo; // Item number of the popup menu item
char* selStr; // Text of the item to be selected

Selects the item in the popup that matches sel Str.
The match is case insensitive.

Returns the number of the menu item selected or zero if there is no match.

void

SetPopItem(theDialog, dlogItemNo, theItem)

XOP DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
int dlogItemNo; // Item number of the popup menu item
int theltem; // Number of the menu item to select

Makes the item the currently selected item in the popup.
Item numbers in menus start from one.
void

GetPopMenu (theDialog, dlogItemNo, sellItem, selStr)
XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int dlogItemNo; // Item number of the popup menu item
int* selltem; // Receives selected item number
char* selStr; // Receives text of item selected

Returns the item number and text of the currently selected item in the popup.

This can be called only after the popup menu item has been initialized by calling CreatePopMenu.
If you are not interested in the text of the item selected, pass NULL for selStr.

void

DeletePopMenultems (theDialog, dlogItemNo, afterItem)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int dlogItemNo; // Dialog item number for popup menu
int afterItem; // The number of an item in the menu

Deletes al of the items after the specified item in the dialog popup menu.
This can be called only after the popup menu item has been initialized by calling CreatePopM enu.
[tem numbers start from one. Pass O to delete all items.

407

408

Chapter 13 — XOPSupport Routines - Dialogs

void
FillPopMenu (theDialog, dlogItemNo, itemList, itemListLen, afterItem)
XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int dlogItemNo; // Dialog item number for popup menu

char* itemList; // Semicolon separated list of items to add
long itemListLen; // Number of characters in the itemList

int afterItem; // The number of an item in the menu

Sets the contents of the existing dialog popup menu.
This can be called only after the popup menu item has been initialized by calling CreatePopMenu.

afterltem is 1-based. The added items are added after the item specified by afterltem or, if
afterltem is O, at the beginning of the popup menu.

In contrast to Macintosh menu manager routines, this routine does not treat any characters as
meta-characters.

int
FillWavePopMenu (theDialog, dlogItemNo, match, options, afterItem)
XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int dlogItemNo; // Dialog item number for popup menu
char* match; // "*" for all waves or match pattern
char* options; // Options for further selection of wave
int afterItem; // The number of an item in the menu

Fills the dialog popup menu with wave names selected based on match and options.
This can be called only after the popup menu item has been initialized by calling CreatePopMenu.

afterltem is 1-based. The added items are added after the item specified by afterltem or, if
afterltem is O, at the beginning of the popup menu.

Returns zero if everything went OK or an error code if the parameters were not legal or another
problem (such as out of memory) occurred.

The meaning of the match, and options parameters is the same as for the Igor WavelL ist function.

In contrast to Macintosh menu manager routines, this routine does not treat any characters as
meta-characters.

Chapter 13 — XOPSupport Routines - Dialogs

int
FillPathPopMenu (theDialog, dlogItemNo, match, options, afterItem)
XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int dlogItemNo; // Dialog item number for popup menu
char* match; // "*" for all paths or match pattern
char* options; // Options for further selection of path
int afterItem; // The number of an item in the menu

Fills the dialog popup menu with path names selected based on match.
This can be called only after the popup menu item has been initialized by calling CreatePopMenu.

afterltem is 1-based. The added items are added after the item specified by afterltem or, if
afterltem is O, at the beginning of the popup menu.

Returns zero if everything went OK or an error code if the parameters were not legal or another
problem (such as out of memory) occurred.

The meaning of the match parameter is the same as for the built-in Igor PathList function.options

must be "".

In contrast to Macintosh menu manager routines, this routine does not treat any characters as
meta-characters.

int
FillwWwindowPopMenu (theDialog, dlogItemNo, match, options, afterItem)
XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows

int dlogItemNo; // Dialog item number for popup menu

char* match; // "*" for all windows or match pattern
char* options; // Options for further selection of windows
int afterItem; // The number of an item in the menu

Fills the dialog popup menu with Igor target window names sel ected based on match and options.
This can be called only after the popup menu item has been initialized by calling CreatePopMenu.

afterltem is 1-based. The added items are added after the item specified by afterltem or, if
afterltem is O, at the beginning of the popup menu.

Returns zero if everything went OK or an error code if the parameters were not legal or another
problem (such as out of memory) occurred.

The meaning of the match parameter is the same as for the built-in Igor WinList function.

nn

If optionsis™" then al windows are selected.
If optionsis"WIN:" then just the target window is selected.

If optionsis"WIN:typeMask" then windows of the specified types are selected.

409

Chapter 13 — XOPSupport Routines - Dialogs

410

The window type masks are defined in 1gorXOP.h. For example, "WIN:1" selects graph windows
only. "WIN:3" selects graphs and tables.

In contrast to Macintosh menu manager routines, this routine does not treat any characters as
meta-characters.

void

KillPopMenus (theDialog)

XOP_DIALOG REF theDialog; // DialogPtr on Mac, HWND on Windows
Cleans up and disposes popup menu handles.

Call thisjust before disposing adialog that uses popup menus.

Chapter 13 — XOPSupport Routines - Files

Routines for XOPs that Access Files

These routines assist an XOP in opening and saving files and in reading data from and writing
datato filesin a platform-independent way. For an overview, see File |/O on page 267.

Some of these routines use full paths to identify files. The full paths must be “native’. That is, on
Macintosh, they must use colons as path separators and on Windows they must use backslashes.
Do not use POSIX paths (with forward slashes), even on Mac OS X, because the Carbon routines
called by the XOPSupport routines do not support forward slashes.

int
MacToWinPath (path)
char path[MAX PATH LEN+1];

This routine handles file path format conversion for cross-platform X OPs. See File Path
Conversions on page 268 for background information.

MacToWinPath converts a Macintosh path into a Windows path by replacing "' with ":\' at the
start of afull path and replacing ":' with '\' elsewhere. Also, leading colons are changed to periods.
However, it does not change a UNC volume name. Here are examples of the conversion
performed by MacToWinPath.

C:A:B:C => C:\A\B\C
\\server\share:A:B:C => \\server\share\A\B\C
":FolderA:FileB" = " \FolderA\FileB"

In the first example, the volume nameis"C". In the second example, using a UNC path, itis
"\\server\share".

If aMacintosh path containsa’\' character, the resulting path will not work as a Windows path.
Therefore, \' characters must not be used in Mac paths.

If the path is aready a Windows path, MacToWinPath does nothing.

NOTE: The path may be longer on output than in was on input ('C:' changed to 'C:\' or "' changed
to'\). The buffer is assumed to be MAX_PATH_LEN+1 characters long. MacToWin-
Path will not overwrite the buffer. It will generate an error if the output path can not fit in
MAX_PATH_LEN characters.

When running on an Asian language system, this routine is double-byte-character-aware and
assumes that the system default character encoding governs the path.

The function result is 0 if OK or an error code, such asPATH_TOO_LONG.

411

Chapter 13 — XOPSupport Routines - Files

412

int
WinToMacPath (path)
char path[MAX PATH LEN+1];

This routine handles file path format conversion for cross-platform XOPs. See File Path
Conversions on page 268 for background information.

WinToMacPath converts a Windows path into a Macintosh path by replacing ":\' with " at the
start of afull path and replacing '\ with ;" elsewhere. Also, leading periods are changed to colons.
However, it does not change a UNC volume name. Here are examples of the conversion
performed by WinToMacPath.

C:\A\B\C => C:A:B:C
\\server\share\A\B\C => \\server\share:A:B:C
" \FolderA\FileB" => "-:FolderA:FileB"

In the first example, the volume nameis"C". In the second example, using a UNC path, it is
"\\server\share'".

If aMacintosh path containsa'\' character, the resulting path will not work as a Windows path.
Therefore, '\' characters must not be used in Mac paths.

If the path is already a Macintosh path, MacToWinPath does nothing.
NOTE: The path may be shorter on output than in was on input (":\' or ".\' changed to .").

When running on an Asian language system, this routine is double-byte-character-aware and
assumes that the system default character encoding governs the path.

Thefunction result is0 if OK or an error code. Currently there is no case in which it returns non-
zero.

HFSToPosixPath (hfsPath, posixPath[MAX PATH LEN+1], isDirectory)
const char* hfsPath;

char posixPath[MAX PATH LEN+1];

int isDirectory;

Converts an HFS (colon-separated) path into a POSIX (Unix-style) path. Thisis available only on
Mac OS X and only to convert paths into POSIX paths so that we can pass them to the standard
file fopen routine or to OS routines that require POSIX paths.

It isalowed for hfsPath and posixPath to point to the same memory.

From the point of view of the Igor user, all paths should be HFS paths although Windows paths
are accepted and converted when necessary. POSIX paths are not valid paths in Igor procedures.

When running on an Asian language system, this routine is double-byte-character-aware and
assumes that the system default character encoding governs the path.

Returns 0 if OK or an error code. If an error isreturned, * posixPath is undefined.

Chapter 13 — XOPSupport Routines - Files

int
GetNativePath (path)
char path[MAX PATH LEN+1];

This routine handles file path format conversion for cross-platform X OPs. See File Path
Conversions on page 268 for background information.

GetNativePath calls WinToMacPath when running on Macintosh and MacToWinPath when
running on Windows. See MacToWinPath and WinToMacPath for details.

When running on an Asian language system, this routine is double-byte-character-aware and
assumes that the system default character encoding governs the path.

The function result is 0 if OK or an error code.

413

Chapter 13 — XOPSupport Routines - Files

414

int

ConcatenatePaths (pathInl, nameOrPathIn2, pathOut)
const char* pathInl;

const char* nameOrPathIn2;

char pathOut [MAX_PATH_LEN+1] ;

Concatenates pathinl and nameOrPathin2 into pathOut. pathOut will be a native path. The input
paths may use Macintosh or Windows conventions. See File Path Conver sions on page 268 for
background information.

pathinlisafull path to adirectory. It can end with zero or one separator.

nameOrPathin2 is either afile name, afolder name or a partia path to afile or folder. It can end
with zero or one separator.

pathOut can point to the same memory as either of the input parameters.
The target file or folder does not need to already exist.
For pathinl, any of the following are legal.

"hd:FolderA:FolderB" "hd:FolderA:FolderB:"
"C:\FolderA\FolderB" "C:\FolderA\FolderB\"

For nameOrPathin2, any of the following are legal.

"FileA" "FolderC"

":FolderC" "\FolderC"

".FolderC" (legal in a Windows path only)
"::FolderC" "\\FolderC"

"..FolderC" (legal in a Windows path only)
"FolderC:FileA" "FolderC\FileA"
"\FolderC:FileA" "\FolderC\FileA"

Here are some examples of concatenation.

"hd:FolderA:FolderB:" + "FoldercC" => "hd:FolderA:FolderB:FolderC"
"hd:FolderA:FolderB:" + ":FolderC" => "hd:FolderA:FolderB:FolderC"
"hd:FolderA:FolderB:" + "::FolderC" => "hd:FolderA:FolderC"
"C:\FolderA\FolderB\" + "FolderC" => "C:\FolderA\FolderB\FolderC"
"C:\FolderA\FolderB\" + "\FolderC" => "C:\FolderA\FolderB\FolderC"
"C:\FolderA\FolderB\" + "\\FolderC" => "C:\FolderA\FolderC"

Multiple colons or backsashes in nameQrPathln2 mean that we want to back up, starting from
the folder specified by pathinl.

When running on an Asian language system, this routine is double-byte-character-aware and
assumes that the system default character encoding governs the paths.

The function result is 0 or error code. In case of error, the contents of pathOut is undefined.

Chapter 13 — XOPSupport Routines - Files

int

GetDirectoryAndFileNameFromFullPath (fullFilePath, dirPath, fileName)
const char* fullFilePath;

char dirPath[MAX PATH LEN+1];

char fileName [MAX FILENAME LEN+1];

fullFilePath isafull path to afile. It may be a Macintosh path (using colons) or a Windows path
(using backslashes).

On output, dirPath isthe full native path to the folder containing the file. This path includes a
trailing colon (Macintosh) or backslash (Windows).

On output, fileName contains just the name of thefile.
The function result is 0 if OK or an error code.

GetDirectoryAndFileNameFromFull Path does not know or care if the file exists or if the
directories referenced in the input path exist. It merely separates the file name part from the full
path.

A simpleimplementation of this routine would merely search for colon or backslash characters.
However, this simple approach causes problems on Asian systems that use two-byte characters.
The problem is that the second byte of atwo-byte character may have the same code as a colon or
backslash, causing the simple implementation to mistakenly take it for a path separator.

GetDirectoryAndFileNameFromFul| Path takes a more complex approach to avoid this problem.
To achieve this, the routine has to know the character encoding governing the fullFilePath
parameter. GetDirectoryAndFileNameFromFull Path assumes that the system default character
encoding governs the full FilePath parameter.

int

FullPathPointsToFile (fullPath)

const char* fullPath;

Returns 1 if the path pointsto an existing file, O if it pointsto afolder or does not point to
anything.

fullPath may be a Macintosh or a Windows path.

When running on an Asian language system, this routine is double-byte-character-aware and
assumes that the system default character encoding governs the path.

415

Chapter 13 — XOPSupport Routines - Files

int
FullPathPointsToFolder (fullPath)
const char* fullPath;

Returns 1 if the path points to an existing folder, O if it pointsto afile or does not point to
anything.
fullPath may be a Macintosh or a Windows path.

When running on an Asian language system, this routine is double-byte-character-aware and
assumes that the system default character encoding governs the path.

int

GetFullMacPathToDirectory (refNum, dirIDOrZero, pathOut, maxPathLen)
long refNum;

long dirIDOrZero;

char* pathOut;

int maxPathLen;

Thisroutine is supported on Macintosh only. It is provided only for the benefit of existing
Macintosh XOPs. New X OPs use platform-independent techniques and don't require this routine.

If your existing XOP used the PathNameFromDirlD or PathNameFromDirWD routines, which
were part of several WaveMetrics file-loaders in previous versions of the XOP Toolkit, use
GetFullMacPathToDirectory instead.

GetFullMacPathToDirectory storesin pathOut afull path to the folder specified by refNum and
diriDOrZero.

refNum is either a volume reference number or aworking directory reference number.
dirlDOrZero must be adirectory ID if refNum is a volume reference number.
diriDOrZero must be zero if refNum isaworking directory reference number.

pathOut must be able to hold maxPathL en characters plus the terminating null character.
The function result is 0 if OK or an error code.

int

GetLeafName (filePath, leafName)

const char* filePath;
char leafName [MAX_FILENAME_LEN+1] ;

filePath is either ", avalid file name or avalid path to afile.
leafName must be able to hold MAX_FILENAME_LEN+1 bytes.

Returns vialeafName the leaf part of the path if it is a path or the contents of filePath if isnot a
path.

Returns 0 if OK or an error code.
Added in XOP Toolkit 5.04 but works with Igor Pro 3.13 or later

416

Chapter 13 — XOPSupport Routines - Files

int

XOPCreateFile (fullFilePath, overwrite, macCreator, macFileType)
const char* fullFilePath;

int overwrite;

long macCreator;

long macFileType;

Creates afile with the location and name specified by fullFilePath.
fullFilePath must be a native path (using colons on Macintosh, backslashes on Windows).

If overwriteistrue and afile by that name already exists, it first deletes the conflicting file. If
overwrite isfalse and afile by that name exists, it returns an error.

macFileTypeisignored on Windows. On Macintosh, it is used to set the new fil€'stype. For
example, use TEXT' for atext file.

macCreator isignored on Windows. On Macintosh, it is used to set the new file's creator code.
For example, use 'IGRO' (last character is zero) for anfile.

Returns 0 if OK or an error code.

int

XOPDeleteFile (fullFilePath)

const char* fullFilePath;

Deletes the specified file.

fullFilePath must be a native path (using colons on Macintosh, backslashes on Windows).
Returns 0 if OK or an error code.

int

XOPOpenFile (fullFilePath, readOrWrite, fileRefPtr)

const char* fullFilePath;

int readOrWrite;
XOP_FILE REF* fileRefPtr;

If readOrWrite is zero, opens an existing file for reading and returns afile reference via
fileRefPtr.

If readOrWrite is non-zero, opens an existing file for writing or creates a new file if none exists
and returns afile reference via fileRefPtr.

fullFilePath must be a native path (using colons on Macintosh, backslashes on Windows).

The function result isO if OK or an error code.

417

Chapter 13 — XOPSupport Routines - Files

int
XOPCloseFile (XOP_FILE REF fileRef)
XOP_FILE REF fileRef; // Reference returned by XOPOpenFile

Closes the referenced file.

Returns 0 if OK or an error code.

int

XOPReadFile(fileRef, count, buffer, numBytesReadPtr)

XOP_FILE REF fileRef; // Reference returned by XOPOpenFile
unsigned long count; // Count of bytes to read

void* buffer; // Where bytes are stored

unsigned long* numBytesReadPtr; // Output: number of bytes read
Reads count bytes from the referenced file into the buffer.

If numBytesReadPtr is not NULL, it stores the number of bytes read in * numBytesReadPtr.
The function result is0 if OK or an error code.

If bytes remain to be read in the file and you ask to read more bytes than remain, the remaining
bytes are returned and the function result is zero. If no bytes remain to be read in the file and you
ask to read bytes, no bytes are returned and the function result isFILE_EOF ERROR.

XOPReadFile is appropriate when you are reading data of variable size, in which case you do not
want to consider it an error if the end of file isreached before reading all of the bytes that you
requested. If you are reading arecord of fixed size, use use XOPReadFile2 instead of
XOPReadFile.

int

XOPReadFile2 (fileRef, count, buffer, numBytesReadPtr)

XOP_FILE REF fileRef; // Reference returned by XOPOpenFile
unsigned long count; // Count of bytes to read

void* buffer; // Where bytes are stored

unsigned long* numBytesReadPtr; // Output: number of bytes read
Reads count bytes from the referenced file into the buffer.

If numBytesReadPtr is not NULL, it stores the number of bytes read in * numBytesReadPtr.
The function result is0 if OK or an error code.

If bytes remain to be read in the file and you ask to read more bytes than remain, the remaining
bytes are returned and the function result is FILE_ EOF ERROR.

XOPReadFile2 is appropriate when you are reading arecord of fixed size, in which case you
want to consider it an error if the end of fileis reached before reading al of the bytesin the
record. If you are reading arecord of variable size then you should use XOPReadFile instead of
XOPReadFile2.

418

Chapter 13 — XOPSupport Routines - Files

int

XOPReadLine (fileRef, buffer, bufferLength, numBytesReadPtr)
XOP_FILE REF fileRef; // Reference returned by XOPOpenFile
void* buffer; // Where bytes are stored

unsigned long bufferLength; // Size of the buffer in bytes

unsigned long* numBytesReadPtr; // Output: number of bytes read
Reads aline of text from the file into the buffer.

buffer points to a buffer into which the line of dataisto be read. bufferLength is the size of the
buffer. The buffer can hold bufferLength-1 characters, plus the terminating null character.

A linein the file may end with:
<end-of-file>
CR
LF
CRLF

XOPReadLine reads the next line of text into the buffer and null-terminates it. The terminating
CR, LF, or CRLF isnot stored in the buffer.

If numBytesReadPtr isnot NULL, it stores the number of bytes read in * numBytesReadPtr.

The function result will be LINE_TOO_LONG _IN_FILE if thereis not enough room in the
buffer to read the entire line. It will be FILE_EOF ERROR if we hit the end-of-file before
reading any characters. It will be zero if we read any characters (even just aCR or LF) before
hitting the end of thefile.

This routine was designed for simplicity of use. For applications that require blazing speed (e.g.,
reading files containing tens of thousands of lines or more), a more complex buffering scheme
can improve performance considerably.

int

XOPWriteFile(fileRef, count, buffer, numBytesWrittenPtr)

XOP_FILE REF fileRef; // Reference returned by XOPOpenFile
unsigned long count; // Count of bytes to write

const void* buffer; // Pointer to data to write

unsigned long* numBytesWrittenPtr; // Output: number of bytes written
Writes count bytes from the buffer to the referenced file.
If numBytesWrittenPtr is not NULL, stores the number of bytes written in * numBytesWrittenPtr.

The function result isO if OK or an error code.

419

Chapter 13 — XOPSupport Routines - Files

int
XOPGetFilePosition(fileRef, filePosPtr)
XOP_FILE REF fileRef; // Reference returned by XOPOpenFile

unsigned long* filePosPtr;
Returns via filePosPtr the current file position of the referenced file.

The function result is0 if OK or an error code.

int

XOPSetFilePosition(fileRef, filePos, mode)

XOP_FILE REF fileRef; // Reference returned by XOPOpenFile
long filePos;

int mode;

Sets the current file position in the referenced file.

If modeis-1, then filePosisrelative to the start of thefile. If modeis O, then filePosisrelative to
the current file position. If mode is 1, then filePos is relative to the end of thefile.

The function result is0 if OK or an error code.

int

XOPAtEndOfFile (fileRef)

XOP_FILE REF fileRef; // Reference returned by XOPOpenFile

Returns 1 if the current file position is at the end of file, O if not..

int
XOPNumberOfBytesInFile (fileRef, numBytesPtr)
XOP_FILE REF fileRef; // Reference returned by XOPOpenFile

unsigned long* numBytesPtr;
Returns via numBytesPtr the total number of bytesin the referenced file.

The function result isO if OK or an error code.

420

Chapter 13 — XOPSupport Routines - Files

int

XOPOpenFileDialog (prompt, fileFilterStr, indexPtr, initDir, fullFilePath)
const char* prompt; // Message displayed in dialog

const char* fileFilterStr; // Controls types of files shown

int* indexPtr; // Controls initial type of file shown
const char* initDir; // Sets initial directory

char fullFilePath[MAX PATH LEN+1]; // Output path returned here

Displays the open file dialog.

Returns O if the user chooses afile or -1 if the user cancels or another non-zero number in the
event of an error.

Returns the full path to the file via full FilePath. In the event of a cancel, fullFilePath is
unmodified.

fullFilePath is a native path (using colons on Macintosh, backslashes on Windows).
On Windows prompt sets the dialog caption. On Macintosh it sets a prompt string in the dialog.
fileFilterSr on Macintosh

If fileFilterStris"", then the open file dialog displays all types of files, both on Macintosh and
Windows. If fileFilterStr isnot ", it identifies the type of filesto display.

Prior to Carbon, fileFilterStr was a concatenation of Macintosh file type codes. For example, to
display text files and Igor Text files, you would pass "TEXTIGTX".

Now this parameter provides control over the Show popup menu which the Macintosh Navigation
Manager displaysin the Open File dialog. As a consequence, the fileFilterStr is now constructed
differently. For example, the string:

"Text Files:TEXT,IGTX:.txt, .itx;All Fileg:**** ;"

resultsin two itemsin the Show popup menu. The first says " Text Files' and displays any file
whose Macintosh file typeis TEXT or IGTX aswell as any file whose file name extension is
".txt" or ".itx". The second item says "All Files* and displays all files.

The two section sections of thisfileFilterString are:

"Data Files:TEXT,DATA:.txt, .dat, .csv;"
"All Fileg:***x. "

Each section causes the creation of one item in the Show popup menu.

Each section consists of three components; a menu item string to be displayed in the Show popup
menu, alist of zero or more Macintosh file types (e.g., TEXT,DATA), and alist of extensions
(e.g., .txt,.dat,.csv).

421

Chapter 13 — XOPSupport Routines - Files

422

In this example, the first menu item would be "Data Files'. When the user selects this menu item,
the Open File dialog would show any file whose Macintosh file typeis TEXT or DATA plus any
file whose extension is .txt, .dat, or .csv.

Note that a colon marks the end of the menu item string, another colon marks the end of the list of
Macintosh file types, and a semicolon marks the end of the list of extensions.

The**** file type used in the second section is specia. It means that the Open File dial og should
display all files. In this section, no extensions are specified because there are no characters
between the colon and the semicolon.

The syntax of the fileFilterString is unforgiving. Y ou must not use any extraneous spaces or any
other extraneous characters. Y ou must include the colons and semicolons as shown above. The
trailing semicolon is required. If there isasyntax error, the entire fileFilterString will be treated
asif it were empty, which will display al files.

fileFilter Str on Windows

On Windows, fileFilterStr is constructed as for the |pstrFilter field of the OPENFILENAME
structure for the Windows GetOpenFileName routine. For example, to alow the user to select
text filesand Igor Text files, use:

"Text Files (*.txt)\O0*.txt\0Igor Text Files (*.itx)\0*.1itx\O0
All Files (*.*)\0*.*\0\O"

Thiswould all be on onelinein an actual program. Note that the string ends with two null
characters (\0\0).

filelndexPtr isignored if it isNULL. If it isnot NULL, then *filelndexPtr is the one-based index
of thefiletype filter to beinitially selected. In the example given above, setting *filelndexPtr to 2
would select the Igor Text file filter on entry to the dialog. On exit from the dialog, *filel ndexPtr
is set to the index of the file filter string that the user last selected.

initial Dir can be"" or it can point to afull path to adirectory. It determines the directory that will
beinitially displayed in the open file dialog. If it is"", the directory will be the last directory that
was seen in the open or savefile dialogs. If initial Dir points to avalid path to a directory, then
this directory will be initially displayed in the dialog. initial Dir is a native path (using colons on
M acintosh, backslashes on Windows).

XOPOpenFileDiaog returns via full FilePath the full path to the file that the user chose or " if the
user cancelled. The path is native path (using colons on Macintosh, backslashes on Windows).
fullFilePath must point to abuffer of at least MAX_PATH_LEN+1 bytes.

On Windows, the initial value of full FilePath setstheinitial contents of the File Name edit
control in the Open File dialog. The following values are valid:

nn

A file name
A full Macintosh or Windows path to afile

Chapter 13 — XOPSupport Routines - Files

On Macintosh, theinitial value of fullFilePath is not currently used. It should be set the same as
for Windows because it may be used in the future.

In the event of an error other than a cancel, XOPOpenFileDialog displays an error dialog. This
should never or rarely happen.

On Windows the dialog will appear in the upper left corner of the screen. Thisis because
Windows provides no straight-forward way to set the position of the dialog.

int

XOPSaveFileDialog (prompt, fileFilterStr, indexPtr, initDir, defExt,
fullFilePath)

const char* prompt; // Message displayed in dialog

const char* fileFilterStr; // Controls types of files shown

int* indexPtr; // Controls initial type of file shown

const char* initDir; // Sets initial directory

const char* defExt; // Default file extension

char fullFilePath[MAX PATH LEN+1]; // Output path returned here

Displaysthe save file dialog.

Returns O if the user provides afile name or -1 if the user cancels or another non-zero number in
the event of an error.

Returns the full path to the file via fullFilePath. full FilePath is both an input and an output as
explained below. In the event of a cancel, fullFilePath is unmodified.

fullFilePath is a native path (using colons on Macintosh, backslashes on Windows).
On Windows, prompt sets the dialog caption. On Macintosh, it sets a prompt string in the dial og.
fileFilterSr on Macintosh

Prior to Carbon, the fileFilterStr wasignored on Macintosh. Y ou were instructed to pass
case it was used in afuture version of the XOP Toolkit. Now this parameter is now used to
control the contents of the Format popup menu in the Save File dialog.

nn

in

nn

If thereis only one format in which you can save thefile, pass"" for fileFilterStr. This will cause
the Format menu to be hidden. If you can save the file in more than one format, pass a string like
this:

"Plain Text:TEXT:.txt;Igor Text:IGTX:.itx;"

Thiswould give you a Format menu like this:

Plain Text
Igor Text

423

Chapter 13 — XOPSupport Routines - Files

424

The format of fileFilterStr is the same as the format of the fileFilterStr parameter to
XOPNavOpenFileDiaog, except that you should specify only one file type and extension for
each section.

At present, only the menu item strings ("Plain Text" and "lgor Text" in the example above) are
used. The Macintosh filetypes (TEXT and IGTX) and the extensions (".txt" and ".itx") are
currently not used. But you should pass some valid values anyway because a future XOP Toolkit
might use them. If there is no meaningful extension, leave the extension section blank.

The Format popup menu in the Save File dialog allows the user to tell you in what format the file
should be saved. Unlike the Show popup menu in the Open File dialog, the Format menu has no
filtering function. Y ou find out which item the user chose via the filelndexPtr parameter.

The syntax of the fileFilterStr is unforgiving. Y ou must not use any extraneous spaces or any
other extraneous characters. Y ou must include the colons and semicol ons as shown above. The
trailing semicolon isrequired. If thereis a syntax error, the entire fileFilterStr will be treated as if
it were empty, which will display all files.

fileFilter Str on Windows

On Windows, fileFilterStr identifies the types of filesto display and the types of files that can be
created. It is constructed as for the IpstrFilter field of the OPENFILENAME structure for the
Windows GetSaveFileName routine. For example, to allow the user to save as atext file or asan
Igor Text file, use:

"Text Files (*.txt)\O0*.txt\0Igor Text Files (*.itx)\0*.itx\0\0"

Note that the string ends with two null characters (\0\0). If fileFilterStr is"", this behaves the
same as "Text Files (*.txt)\0* .txt\O\0".

filelndexPtr it isignored if itisNULL. If itisnot NULL, then *filelndexPtr is the one-based
index of thefile typefilter to be initialy selected. In the example given above, setting
*filelndexPtr to 2 would select the Igor Text file type on entry to the dialog. On exit from the
dialog, *filelndexPtr is set to the index of the file type string that the user last selected.

un

initial Dir can be"" or it can point to afull path to adirectory. It determines the directory that will
beinitially displayed in the savefile dialog. If it is"", the directory will be the last directory that
was seen in the open or savefile dialogs. If initial Dir points to avalid path to a directory, then
this directory will be initially displayed in the dialog. initial Dir is a native path (using colons on
M acintosh, backslashes on Windows).

defaultExtensionStr isignored on Macintosh. Y ou must pass " because thismay be usedin a
future version of the XOP Toolkit.

On Windows, defaultExtensionStr points to the extension to be added to the file name if the user
does not enter an extension. For example, pass "txt" to have ".txt" appended if the user does not
enter an extension. If you don't want any extension to be added in this case, pass NULL.

Chapter 13 — XOPSupport Routines - Files

XOPSaveFileDialog returns via fullFilePath the full path to the file that the user chose or " if the
user cancelled. The path is a native path (using colons on Macintosh, backslashes on Windows).
fullFilePath must point to abuffer of at least MAX_PATH_LEN+1 bytes.

On both Windows and Macintosh, the initial value of fullFilePath sets the initial contents of the
File Name edit control in the save file dialog. The following values are valid:

A file name
A full Macintosh or Windows path to afile

In the event of an error other than a cancel, XOPSaveFileDialog displays an error dialog. This
should never or rarely happen.

On Windows the dialog will appear in the upper left corner of the screen. Thisis because
Windows provides no straight-forward way to set the position of the dialog.

425

Chapter 13 — XOPSupport Routines - File-Loaders

426

Routines for File-Loader XOPs

These routines are specialized for file-loader XOPs — XOPs that |oad data from files into Igor
waves.

int
GetFullPathFromSymbolicPathAndFilePath (pathName, filePath, fullFilePath)
const char* pathName; // Igor symbolic path name

char filePath[MAX PATH LEN+1]; // Path to file

char fullFilePath[MAX PATH LEN+1]; // Output full path

pathName is the name of an Igor symbolic path or "" if no symbolic path isto be used.

filePath is either afull path, apartial path, or asimple file name. It may be a Macintosh path
(using colons) or a Windows path (using backslashes).

fullFilePath is an output and will contain the full native path (using colons on Macintosh,
backslashes on Windows) to the file referenced by the symbolic path and the file path.

Thisroutineis used by file loader XOPs to get afull native path to a file based on the typical
inputsto afile loader, namely an optional Igor symbolic path and an optional full or partial file
path or file name.

The two most common cases are:
LoadWave <full path to files>
LoadWave/P=<symbolic path name> <file names

where <file name> conotes a simple file name.

Less common cases that this routine also handles are:

LoadWave/P=<symbolic path name> <full path to file>
LoadWave/P=<symbolic path name> <partial path to file>

In the following cases, the full path to the file can not be determined, so GetFull PathFrom-
SymbolicPathAndFilePath returns an error. Thiswould cause afile loader to display an open file
dialog:

LoadWave <file name>

LoadWave <partial path to file>

filePath and fullFilePath may point to the same storage, in which case the output string will
overwrite the input string.

This routine does not check that the output path is valid or points to an existing file. This makes
the routine useabl e for applications in which you are creating the file as well as applicationsin
which you are reading thefile. If you want to verify that the output path pointsto an existing file,
use the FullPathPointsToFile routine.

The function result is O if it was able to create the full path or an error code if not.

Chapter 13 — XOPSupport Routines - File-Loaders

int

FileLoaderMakeWave (column, waveName, numPoints, fileLoaderFlags, whp)
long column; // Number of column for this wave

char* waveName; // Name for this wave

long numPoints; // Number of points in wave

int fileLoaderFlags; // Standard file-loader flags

waveHndl* whp; // Place to store handle for new wave

Thisroutine isintended for use in simple file-loader XOPs such as SimpleLoadWave. It makes a
wave with numPoints points and with the numeric type as specified by fileL oaderFlags.

The function result is 0 or an error code.

Typically you would get fileL oaderFlags using the Filel oaderGetOperationFl ags routine.
It returns a handle to the wave viawhp or NULL in the event of an error.

fileLoaderFlags is interpreted using the standard file-loader flag bit definitionsin XOP.h.

If (fileLoaderFlags & FILE_ LOADER_OVERWRITE) is non-zero, FileL oaderMakeWaves
overwrites any pre-existing wave in the current data folder with the specified name.

If (fileLoaderFlags & FILE_LOADER_DOUBLE_PRECISION) is non-zero,
FileL oaderM akeWaves creates a double-precision floating point wave. Otherwise, it creates a
single-precision floating point wave.

If (fileLoaderFlags & FILE_LOADER_COMPLEX) is non-zero, FileL oaderM akeWaves creates
acomplex wave. Otherwise, it creates areal point wave.

column should be the number of the column being loaded or the number of the wave in a set of
waves or zero if this does not apply to your XOP.

NOTE: Intheevent of aname conflict, FileLoaderMakeWave will change the contents of
waveName. waveName must be able to hold MAX_OBJ NAME characters plus a null
character.

427

Chapter 13 — XOPSupport Routines - File-Loaders

428

int

SetFileLoaderOutputVariables (fileName, numWavesLoaded, waveNames)
char* fileName; // Name of the file just loaded

int numWavesLoaded; // Number of waves loaded

char* waveNames; // Semicolon-separated list of wave names

If your external operation uses Operation Handler, use SetFilel oaderOperationOutputV ariables
instead of this routine.

SetFilel oaderOutputV ariables should be called at the end of afile load to set the standard file
loader output globals:

S fileName The name of the file loaded.

S path The full path to the folder containing the file. See description below.
V_flag The number of waves loaded.

S waveNames Semicolon-separate list of wave names (e.g. "waveO;wavel;").

fileName can be either just the file name (e.g., "Data File") or afull path including afile name
(e.g., "hd:Data Folder:Data File"). If it isafull path, it can be a Macintosh path (using colons) or
aWindows path (using backs ashes).

If fileNameisafull path, SetFilel oaderOutputV ariables stores the path to the folder containing
thefilein S_path and storesthe simple file name in S_fileName. In this case, the stored path uses
Macintosh path syntax and includes atrailing colon.

If fileName is asimple file name, SetFilel oaderOutputV ariables does not set or create S_path
and stores the smplefile namein S_fileName.

New or updated X OPs should pass the full path to SetFilel oaderOutputVariables so that S _path
will be set to a meaningful value.

Returns O or an error code.

int

SetFilelLoaderOperationOutputVariables (runningInUserFunction, fileName,
numWavesLoaded, waveNames)

int runningInUserFunction; // Truth that operation was called from

function

const char* fileName; // Name of file loaded or full path to file
int numWavesLoaded; // Number of waves created
const char* waveNames; // Semicolon-separated list of wave names

This function does the same thing as SetFilel oaderOutputV ariables except that, when
runninglnUserFunction istrue, it sets local variables in the user function. Y ou obtain the value to
pass for the runninglnUserFunction parameter from the calledFromFunction field of your
operation’s runtime parameter structure.

Chapter 13 — XOPSupport Routines - File-Loaders

This function isintended to be used only when you are implementing an external operation using
Operation Handler. When you register your operation via RegisterOperation, you must specify
that your operation sets the numeric variable V_flag and the string variables S fileName, S path,
and S_waveNames. See Simplel oadWaveOperation.c for an example.

See discussion of SetFilel oaderOutputV ariables for further details.
Returns O or error code.

Added in Igor Pro 5.0 but works with any version. If you call thiswhen running with an earlier
version, it actsjust like SetFilel oaderOutputV ariables regardless of the value of
runninglnUserFunction.

429

Chapter 13 — XOPSupport Routines - Windows

430

Routines for XOPs with Windows

These routines provide support for X OPs that add a window to Igor. See Chapter 9, Adding
Windows, for further information.

WindowPtr

GetXOPWindow (windowID, wStorage, behind)

int windowID; // ID for WIND resource in XOP's resource fork
Ptr wStorage; // Place to store window record or NULL
WindowPtr behind; // Window behind which new window should go or -1

This routine is supported on Macintosh only. See Chapter 9 for adiscussion of creating a window
in a Windows XOP.

Opens a new window for an XOP.
The parameters and result are the same as for the Macintosh Toolbox GetNewCWindow call.

GetX OPWindow sets the windowKind field of the new window so that Igor can recognize it as
belonging to your XOP.

XOP_WINDOW REF
GetActiveWindowRef (void)

Returns an XOP_WINDOW_REF for the active window.

An XOP_WINDOW_REF is a WindowPtr on Macintosh and an HWND on Windows. The
returned value could be a reference to awindow that is not owned by the calling XOP.

int

IsXOPWindowActive (windowRef)

XOP WINDOW REF windowRef;

Returns true if the specified window is the active window, falseif not.

An XOP_WINDOW_REF is a WindowPtr on Macintosh and an HWND on Windows.
void

ShowAndActivateXOPWindow (windowRef)
XOP_WINDOW_ REF windowRef;

Shows the specified window if it is hidden and then makes it the active window.
An XOP_WINDOW _REF is a WindowPtr on Macintosh and an HWND on Windows.

Chapter 13 — XOPSupport Routines - Windows

void
HideAndDeactivateXOPWindow (windowRef)
XOP_WINDOW REF windowRef;

Deactivates the window if it is the active window and then hides it.
An XOP_WINDOW_REF is aWindowPtr on Macintosh and an HWND on Windows.

void

SetXOPWindowTitle (windowRef, title)
XOP_WINDOW_ REF windowRef;

const char* title;

Setsthetitle (also known as "caption™) for the window to the string specified by title.

void

GetXOPWindowPositionAndState (windowRef, r, winStatePtr)
XOP_WINDOW REF windowRef;

Rect* r; // Receives window's coordinates.
int* winStatePtr; // Receives window state bits.

Returns the window's position on the screen in pixels and its state. Use thiswith
SetX OPWindowPositionAndState to save and restore a window's position and state.

Use this routine when you need to store awindow position in a platform-dependent way, for
example, in a preference file. Use GetX OPWindowlgorPositionAndState to store a window
position in a platform-independent way, for example, in a/W=(left,top,right,bottom) flag.

On Macintosh, the returned coordinates specify the location of the window's content region in
global coordinates. Bit O of *winStatePtr is set if the window is visible and cleared if it is hidden.
All other bits are set to 0.

On Windows, the returned coordinates specify the the location of the entire window in its normal
state relative the the top/left corner of the Igor MDI client window. Bit O of *winStatePtr is set if
the window isvisible and cleared if it is hidden. Bit 1 of *winStatePtr is set if the window is
minimize and cleared if it is not minimized. All other bits are set to 0.

On either platform, the returned rectangle is a Macintosh rectangle.

void

SetXOPWindowPositionAndState (windowRef, r, winStatePtr)
XOP_WINDOW REF windowRef;

Rect* r; // Contains window's coordinates.
int* winStatePtr; // Contains window state bits.

Moves the X OP window to the position indicated by r and setsits state. Use thiswith
GetX OPWindowPositionAndState to save and restore a window's position and state.

431

Chapter 13 — XOPSupport Routines - Windows

432

Use this routine when you need to restore awindow position in a platform-dependent way, for
example, in a preference file. Use SetX OPWindowl gorPositionAndState to restore a window
position in a platform-independent way, for example, in a/W=(left,top,right,bottom) flag.

See GetX OPWindowPositionAndState for a discussion of the units of the rectangle and the
meaning of the winState parameter.

This routine makes an effort to prevent the window from becoming inaccessible because it is off-
screen.

void

TransformWindowCoordinates (mode, coords)
int mode;

double coords[4];

Transforms window coordinates from screen pixelsinto Igor coordinates or from Igor coordinates
into screen pixels.

Thisroutineisintended for use in command line operations that set a window position, for
example, for an operation that supports a/W=(left,top,right,bottom) flag. We want a given
command containing a/W flag to produce approximately the same result on Macintosh and on
Windows. Thisis complicated because of differencesin the way each platform represents the
position of windows.

Igor coordinates are a special kind of coordinates that were designed to solve this problem. They
are described in the section I gor Window Coordinates on page 255.

modeis
0: Transform from screen pixelsinto Igor coordinates.
1 Transform from Igor coordinates into screen pixels.

For TransformWindowCoordinates, screen pixels are in global coordinates on Macintosh (relative
to the top/left corner of the main screen) and are in MDI-client coordinates (relative to the top/left
corner of the MDI client window, not the MDI frame) on Windows.

coordsis an array of window coordinates. It is both an input and an output. The coordinates
specify the location of the window's content region only. That is, it excludes the title bar and the
frame.

coordg[0] isthe location of the left edge of the window content region.
coordg[1] isthe location of the top edge of the window content region.
coordg 2] isthe location of the right edge of the window content region.
coordg[3] isthe location of the bottom edge of the window content region.

On Macintosh, screen coordinates and Igor coordinates are identical. Thus, thisroutineisaNOP
on Macintosh.

Chapter 13 — XOPSupport Routines - Windows

void

GetXOPWindowIgorPositionAndState (windowRef, coords, winStatePtr)
XOP_WINDOW REF windowRef;

double coords[4];

int* winStatePtr;

Returns the X OP window's position on the screen in Igor coordinates and its state. Use thiswith
SetX OPWindowIgorPositionAndState to save and restore a window's position and state.

Use this routine when you need to store awindow position in a platform-independent way, for
example, in a/W=(left,top,right,bottom) flag. Use GetX OPWindowPositionAndState to store a
window position in a platform-dependent way, for example, in a preference file.

See Igor Window Coordinates on page 255 for a discussion of Igor coordinates.

On both Macintosh and Windows, the returned coordinates specify the location of the window's
content region, not the outside edges of the window. On Windows, the returned coordinates
specify the the location of the window in its normal state even if the window is minmized or
maximized.

On Macintosh, bit O of *winStatePtr is set if the window isvisible and cleared if it is hidden. All
other bits are set to 0.

On Windows, bit 0 of *winStatePtr is set if the window isvisible and cleared if it is hidden. Bit 1
of *winStatePtr is set if the window is minimize and cleared if it is not minimized. All other bits
aresetto 0.

void

SetXOPWindowIgorPositionAndState (windowRef, coords, winState)
XOP_WINDOW REF windowRef;

double coords[4];

int winState;

Moves the X OP window to the position indicated by coords and sets its state. Use thiswith
GetX OPWindowlgorPositionAndState to save and restore a window's position and state.

Use this routine when you need to restore a window position in a platform-independent way, for
example, in a/W=(left,top,right,bottom) flag. Use SetX OPWindowPositionAndState to restore a
window position in a platform-dependent way, for example, in a preferencefile.

See lgor Window Coor dinates on page 255 for a discussion of Igor coordinates.

On both Macintosh and Windows, the coordinates must specify the location of the window's
content region, not the outside edges of the window. On Windows, the coordinates specify the the
location of the window in its normal state even if the window is minmized or maximized.

On Macintosh, bit 0 of winState is set if the window isvisible and cleared if it is hidden. All other
bits are set to 0.

433

Chapter 13 — XOPSupport Routines - Windows

On Windows, bit 0 of winStateis set if the window isvisible and cleared if it is hidden. Bit 1 of
winStateis set if the window is minimize and cleared if it is not minimized. All other bits are set
to 0.

This routine makes an effort to prevent the window from becoming inaccessible because it is off-
screen.

void

ArrowCursor (void)

Sets the cursor to the arrow.

Your XOP can call thisif it owns the top window.

void

IBeamCursor (void)

Sets the cursor to the | beam.

Y our XOP can call thisif it owns the top window.

void

HandCursor (void)

Sets the cursor to the hand.

Your XOP can call thisif it owns the top window.

void

WatchCursor (void)

Sets the cursor to the watch.

Your XOP can call thisif it is doing atime-consuming operation.
void

SpinCursor (void)

Sets the cursor to the spinning beachball.

Your XOP can call thisif it is doing atime-consuming operation.

To spin the beachball cursor and aso allow background processing, call SpinProcess.

434

Chapter 13 — XOPSupport Routines - Text Windows

Routines for XOPs with Text Windows

Igor provides a group of routines, called TU ("Text Utility") routines, that allow an XOP to
implement afully functional text window, like Igor’s built-in procedure window. The sample
XOP TUDemo illustrates using TU routines. There isadiscussion of TU windows on page 254.

Creating and Disposing Text Windows

int

TUNew2 (winTitle, winRectPtr, TUPtr, windowRefPtr)
const char* winTitle;

const Rect* winRectPtr;

TUStuffHandle* TUPtr;

XOP_WINDOW REF* windowRefPtr;

winTitle points to thetitle (also known as "caption”) for the new window.

winRectPtr points to a Macintosh Rect defining the location and size of the window in units of
pixels. The Rect defines the "content region” of the window - that is, the are exclusive of thetitle
bar or caption and frame.

On Macintosh, the rectangle isin global coordinates. Use atop coordinate of 40 to position the
window right below the menu bar.

On Windows, the rectangle isin client window coordinates of the Igor MDI frame window. Use a
top coordinate of 22 to position the window right below the menu bar.

TUNew?2 returns via TUPtr a handle to the TU document. Y ou pass this handle back to Igor when
calling TU XOPSupport routines.

TUNew?2 also returns via windowRefPtr a pointer to a WindowPtr (Mac) or HWND (Windows)
for the newly created window.

In the event of an error, it returns non-zero as the function result and NULL via TUPtr and
windowRefPtr. In the event of success, it returns zero as the function result.

TUNew?2 uses a default font and font size. The resulting text document islike an Igor plain text
notebook.

The window isinitialy hidden. Call ShowAndActivateX OPWindow to show it.

TUStuffHandle

TUNew (winPtr, borderRectPtr, font, size, crOnly)

WindowPtr winPtr; // Pointer to window record for text window
Rect* borderRectPtr; // Pointer to rect defining text area in window
int font, size; // Font number and type size to use for text
int crOnly; // -1 for no wrap around, 0 for wrap around

435

Chapter 13 — XOPSupport Routines - Text Windows

436

NOTE: TUNew isavailableto Macintosh XOPs only. New cross-platform X OPs should use
TUNew?2 for both Macintosh and Windows.

TUNew returns a handle to arecord containing all information about the text area.
Pass NULL for winPtr if you want TUNew to create a new window.

NOTE: The borderRectPtr parameter is not implemented. The entire window will be used for
text. Pass NULL for this parameter.

NOTE: Thetext utility/XOP interface can not presently handle wrapping text so crOnly should
awaysbe-1.

void
TUDispose (TU)
TUStuffHandle TU; // Handle to information about the text area

Disposes dl data structures associated with TU.
Call thiswhen your XOP is cleaning up before being closed.
If you created the window by calling TUNew2, then TUDispose always disposes the window.

If you created the window by calling the older TUNew routine, then TUDispose disposesit only
if you did not pass NULL as the winPtr parameter to TUNew. If you did pass NULL, then you
must dispose of the window yourself after calling TUDispose.

Responding to Text Window Messages

void
TUDisplaySelection (TU)
TUStuffHandle TU; // Handle to information about the text area

Scrolls the specified text area until the selected text isin view.
Call thisin response to the DISPLAY SELECTION message from Igor.

void

TUGrow (TU, size)

TUStuffHandle TU; // Handle to information about the text area
long size; // Vertical in high word, horizontal in low word

Grows the window containing the text area according to size.
Macintosh XOPs must call this routine in response to the GROW message from Igor.

Windows X OPs don't receive the GROW message. Instead, it is handled internally in Igor.
Therefore, Windows X OPs do not need to call this routine.

Chapter 13 — XOPSupport Routines - Text Windows

If sizeis zero, it zooms the window in or out.

If sizeis—1, thistells TUGrow to adjust the TU window to a change in window size that has
already been done. This causes TUGrow to adjust to the change in size, for example, to move the
scroll barsto their new position, after the XOP has resized the window.

void
TUUpdate (TU)
TUStuffHandle TU; // Handle to information about the text area

Updates the TU window if its update region is not empty.
Macintosh XOPs must call this routine in response to the UPDATE message from Igor.

Windows X OPs don't receive the UPDATE message. Instead, it is handled internaly in Igor.
Therefore, Windows X OPs do not need to call this routine.

void

TUActivate (TU, flag)

TUStuffHandle TU; // Handle to information about the text area
int flag; // Flag = 0 for deactivate, 1 for activate

Activates or deactivates the text area.
Macintosh XOPs must call this routine in response to the ACTIVATE message from Igor.

Windows X OPs don't receive the ACTIVATE message. Instead, it is handled internally in Igor.
Therefore, Windows X OPs do not need to call this routine.

void

TUIdle (TU)

TUStuffHandle TU; // Handle to information about the text area
Blinks the caret in the text area

Call thisin response to the IDLE message from Igor.

void
TUMoveToPreferredPosition (TU)
TUStuffHandle TU; // Handle to information about the text area

Moves the window to the preferred position, as determined by the user's notebook preferences.
Normally, you will call thisin response to the MOVE_TO_PREFERRED_POSITION message
from Igor.

During the TUMoveToPreferredPosition call, your XOP may receive GROW,
WINDOW_MOVED, and possibly other message from Igor.

437

Chapter 13 — XOPSupport Routines - Text Windows

438

void
TUMoveToFullSizePosition (TU)
TUStuffHandle TU; // Handle to information about the text area

Moves the window to show all of its content or to fill the screen (Macintosh) or MDI frame
window (Windows). Normally, you will call thisin response to the
MOVE_TO_FULL_POSITION message from Igor.

During the TUMoveToFull SizePosition call, your XOP may receive GROW,
WINDOW_MOVED, and possibly other message from Igor.

void
TURetrieveWindow (TU)
TUStuffHandle TU; // Handle to information about the text area

Moves the window, if necessary, to fit entirely within the screen (Macintosh) or MDI frame window
(Windows). Normally, you will cal thisin response to the RETRIEV E message from Igor.

During the TURetrieveWindow call, your XOP may receive GROW, WINDOW_MOVED, and
possibly other message from Igor.

void
TUNull (TU)
TUStuffHandle TU; // Handle to information about the text area

Sets the cursor according to the position of mouse.
Macintosh XOPs must call thisroutine in response to the NULLEVENT message from Igor.

Windows X OPs don't receive the NULLEVENT message. Instead, it is handled internally in Igor.
Therefore, Windows X OPs do not need to call this routine.

void
TUCopy (TU)
TUStuffHandle TU; // Handle to information about the text area

Copies the selected text to clipboard.
Call thisin response to the COPY message from Igor.
void

TUCut (TU)
TUStuffHandle TU; // Handle to information about the text area

Cuts the selected text to clipboard.
Cdll thisin response to the CUT message from Igor.

Chapter 13 — XOPSupport Routines - Text Windows

void
TUPaste (TU)
TUStuffHandle TU;

// Handle to information about
Pastes text from the clipboard into the text area.

Cdll thisin response to the PASTE message from Igor.

void

TUClear (TU)
TUStuffHandle TU;

Clears the selected text.

// Handle to information about

Call thisin response to the CLEAR message from Igor.

void
TUUndo (TU)

TUStuffHandle TU; // Handle to information about

Undoes the previous action.
Call thisin response to the UNDO message from Igor.
void

TUPrint (TU)

TUStuffHandle TU; // Handle to information about

Allows the user to print the selected text or all of text if thereisno selection.
Cdll thisin response to the PRINT message from Igor.
void

TUPageSetupDialog (TU)
TUStuffHandle TU;

// Handle to information about
Displays a page setup dialog.

Call thisin response to the PAGESETUP message from Igor.

void

TUClick (TU)

TUStuffHandle TU; // Handle to information about

Handles clicksin the text area.

the

the

the

the

the

the

text

text

text

text

text

text

Macintosh XOPs must call this routine in response to the CLICK message from Igor.

Windows XOPs don't receive the CLICK message. Instead, it is handled internaly in Igor.

Therefore, Windows X OPs do not need to call this routine.

area

area

area

area

area

area

439

Chapter 13 — XOPSupport Routines - Text Windows

440

void

TUKey (TU, eventPtr)

TUStuffHandle TU; // Handle to information about the text area
EventRecord* eventPtr; // Pointer to keydown event record

Handles the keystroke.

Macintosh XOPs must call thisroutine in response to the KEY message from Igor.

Windows X OPs don't receive the KEY message. Instead, it is handled internally in Igor.

Therefore, Windows X OPs do not need to call this routine.

void

TUSelectAll (TU)

TUStuffHandle TU; // Handle to information about
Selects all of the text in the text area.

Call thisin responseto the SELECT_ALL message from Igor.

void

TUFind (TU, code)

TUStuffHandle TU; // Handle to information about
int code; // 1= normal, 2= find same, 3=

Allows the user to find text in the text area.
Cdll thisin response to the FIND message from Igor.
void

TUReplace (TU)
TUStuffHandle TU; // Handle to information about

Allows the user to replace text in the text area.
Call thisin response to the REPL ACE message from Igor.
void

TUIndentLeft (TU)
TUStuffHandle TU; // Handle to information about

Indents the selected text left by one tab stop.
Call thisin response to the INDENTLEFT message from Igor.
void

TUIndentRight (TU)
TUStuffHandle TU; // Handle to information about

the text area

the text area
find selection

the text area

the text area

the text area

Chapter 13 — XOPSupport Routines - Text Windows

Indents the selected text right by one tab stop.

Call thisin response to the INDENTRIGHT message from Igor.

void

TUFixEditMenu (TU)

TUStuffHandle TU; // Handle to information about the text area
Enables or disablesitemsin the Edit menu according to state of the text area.

Call thisin response to the MENUENABL E message from Igor.

void

TUFixFileMenu (TU)

TUStuffHandle TU; // Handle to information about the text area

Enables or disables theitemsin File menu according to the state of text area.

Cdll thisin response to the MENUENABLE message from Igor.

int

TUSFInsertFile (TU, prompt, fileTypes, numTypes)

TUStuffHandle TU; // Handle to information about the text area
char* prompt; // C string for prompt in open dialog

OSType fileTypesI(]; // Array of file types that you can open
short numTypes; // Number of file types in fileTypesI]

Allows the user to insert text from afile into your document.
It puts up the open file dialog to allow the user to choose afile.
Call thisin response to the INSERTFILE message from Igor.

The function result isO if OK or an error code.

int

TUSFWriteFile (TU, prompt, fileType, allFlag)

TUStuffHandle TU; // Handle to information about the text area
char* prompt; // C string for prompt in save dialog

OSType fileType; // File type to save file as

short allFlag; // 0= write selected text, 1= write all text

Allows the user to save text from the text areain afile.

It puts up the save file dialog to allow the user to specify thefile.
Cdll thisin response to the SAVEFILE message from Igor.

The SAVEFILE message is obsolete. See Chapter 4 for details.

The function result isO if OK or an error code.

441

Chapter 13 — XOPSupport Routines - Text Windows

442

Text Window Utility Routines

Therest of the text utility routines are not tied to any specific message from Igor. Rather, they
allow you to manage the window and manipulate the text programmatically as necessary for your
XOP.

void
TUDrawWindow (TU)
TUStuffHandle TU; // Handle to information about the text area

Draws the text and scroll barsin the text area

long
TULines (TU)
TUStuffHandle TU; // Handle to information about the text area

Returns the total number of lines of text in the text area.

int

TUGetDocInfo (TU, dip)

TUStuffHandle TU; // Handle to information about the text area
TUDocInfoPtr dip; // Receives info about the document

This routine provides away for you to get miscellaneous information about the TU document. At
present, it is mostly useful for finding the number of paragraphs in the document. The TUDoclnfo
structureis defined in IgorXOP.h.

TUGetDoclnfo returns information about the text utility document viathe structure pointed to by
dip. You set the version field of the TUDoclnfo structure before calling TUGetDoclnfo so that
Igor knows which version of the structure your XOP is using.

The function result is0 if OK, -1 if the version of Igor that is running does not support the doc
info version or an error code if the version of Igor that is running does not support this callback.

Example

TUDocInfo di;
long paragraphs;
int result;

di.version = TUDOCINFO_VERSION;

if (result = TUGetDocInfo (theTU, &di))
return result;

paragraphs = di.paragraphs;

Chapter 13 — XOPSupport Routines - Text Windows

int

TUGetSelLocs (TU, startLocPtr, endLocPtr)

TUStuffHandle TU; // Handle to information about the text area
TULocPtr startLocPtr; // Receives location of start of selection
TULocPtr endLocPtr; // Receives location of end of selection

Sets * startLocPtr and * endL ocPtr to describe the selected text in the document.

The TULoc structure is defined in 1gorX OPs.h. A text location consists of a paragraph number,
starting from zero, and a character position starting from zero.

int

TUSetSellocs (TU, startLocPtr, endLocPtr, flags)

TUStuffHandle TU; // Handle to information about the text area
TULocPtr startLocPtr; // Contains location of start of selection
TULocPtr endLocPtr; // Contains location of end of selection

int flags; // Miscellaneous flags

If startLocPtr is not NULL, sets the selection in the text area based on startL ocPtr and endL ocPtr
which must be valid.

If flagsis 1, it displaysthe selectionif it is out of view. Other bitsin flags may be used for other
purposes in the future. For now they should all be 0.

The function result is0 if OK, an error code if the TULocs are not valid or if the version of Igor
that is running does not support this callback.

For the TUL oc structure to be valid, its paragraph field must be between 0 and p-1 where p isthe
number of paragraphs in the document as reported by TUGetDaoclnfo. The character position field
must be between 0 and ¢ where ¢ is the number of characters in the paragraph as reported by
TUFetchParagraphText. In a paragraph with ¢ characters, the location before the first character
corresponds to a position of zero, the location before the last character corresponds to a position
of c-1 and the location after the last character corresponds to a position of c.

void

TUInsert (TU, dataPtr, datalen)

TUStuffHandle TU; // Handle to information about the text area
char* dataPtr; // Pointer to text to insert

long datalen; // Number of characters to insert

Inserts the specified text in the text area.
This allows your XOP to insert text at any time.

443

Chapter 13 — XOPSupport Routines - Text Windows

void
TUDelete (TU)
TUStuffHandle TU; // Handle to information about the text area

Deletes the selected text in the text area.
This alows your XOP to delete text at any time.

int

TUInsertFile (TU, fileName, wdRefNum)

TUStuffHandle TU; // Handle to information about the text area
char* fileName; // C string containing name of file to insert
short wdRefNum; // Working directory refNum for file

Inserts text from the file at the insertion point in the text area.
Thisis handy for reloading text that you saved as part of an experiment.
The function result is O if OK or an error code.

int

TUWriteFile (TU, fileName, wdRefNum, allFlag)

TUStuffHandle TU; // Handle to information about the text area
char* fileName; // C string name of file to write

short wdRefNum; // Working directory refNum for file

short allFlag; // 0= write selected text, 1= write all text

Writes text from the text areato the specified file.
Thisis handy for saving text as part of an experiment.

The function result is0 if OK or an error code.

int

TUFetchParagraphText (TU, paragraph, textPtrPtr, lengthPtr)
TUStuffHandle TU; // Handle to information about the text area
long paragraph; // Number of paragraph to fetch starting from 0
char* textPtrPtr; // Receives pointer to text

long* lengthPtr; // Receives number of characters in paragraph

This routine fetches al of the text in the specified paragraph.
If textPtrPtr isnot NULL, it returns via textPtrPtr a pointer to the text in the specified paragraph.
Sets *|lengthPtr to the number of characters in the paragraph whether textPtrPtris NULL or not.

textPtrPtr is a pointer to your char* variable. Igor alocates a pointer, using NewPtr, and sets
*textPtrPtr to point to the allocated memory. Y ou should dispose this when you no longer need it.

Thefunction result isO if OK, an error code if the paragraph is out of range or if an error occurs
fetching the text or if the version of Igor that is running does not support this callback.

Chapter 13 — XOPSupport Routines - Text Windows

Example

char* p;
long paragraph, length;
int result;

paragraph = 0;

if (result = TUFetchParagraphText (TU, paragraph, &p, &length))
return result;

<Deal with the text pointed to by p>

DisposePtr (p) ;

Note that the text pointed to by p isnot null terminated and therefore is not a C string.

int

TUFetchSelectedText (TU, textHandlePtr, reservedForFuture, flags)
TUStuffHandle TU; // Handle to information about the text area
Handle* textHandlePtr; // Receives handle containing text

void* reservedForFuture; // Pass NULL for this

long flags; // Miscellaneous flags

Returns via textHandlePtr the selected text in the text utility document.

textHandlePtr is a pointer to your Handle variable. Igor allocates a handle, using NewHandle, and
sets *textHandlePtr to refer to the allocated memory. Y ou should dispose this when you no longer
need it.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. If you pass the handle
back to Igor, you must remove the null terminator and unlock the handle. See Under stand the
Difference Between a String in a Handle and a C String on page 321.

reservedForFuture should be NULL for now.
flags should be O for now.

Thefunction result is0 if OK, an error code if an error occurs fetching the text or if the version of
Igor that is running does not support this callback.

Example

Handle h;
int result;

paragraph = 0;

if (result = TUFetchSelectedText (TU, &h, NULL, O0))
return result;

<Deal with the text in handle>

DisposeHandle (h) ;

445

Chapter 13 — XOPSupport Routines - Text Windows

446

int

TUSetStatusArea (TU, message, eraseFlags, statusAreaWidth)

TUStuffHandle TU; // Handle to information about the text area
char* message; // Message to display or NULL

int eraseFlags; // Determine when message will be erased
statusAreaWidth; // Desired width of status area

Controls the status area in the bottom/left-hand corner of an Igor Pro text window.

If messageisnot NULL, it sets the status message in window. message is a C string. Only the
first 127 characters are displayed.

If messageis not NULL then eraseFlags determines when the status message will be erased. See
the TU_ERASE STATUS #definesin IgorXOP.h.

If statusAreaWidth is>= 0, it setsthe width of the status area. Thisisin pixels. Pass -1 if you
don’'t want to change the status area width.

The function result is 0 if OK, an error code if the version of Igor that is running does not support
this callback.

Chapter 13 — XOPSupport Routines - Resources

Routines for Dealing with Resources

These callbacks are useful for accessing resources from within an XOP. See M acintosh
Programming I ssues on page 288 for a discussion of issues involving resources on Macintosh.
int

XOPRefNum (void)

Thisroutine is supported on Macintosh only. Thereis no Windows equivalent.

Returns the file reference number for the XOP' s own resource fork.

Handle

GetXOPResource (resType, resID)

long resType; // Resource type, e.g., 'DLOG'
int resID; // Resource ID number

Thisroutine is supported on Macintosh only. Thereis no Windows equivalent.

GetX OPResource returns a handle to the specified resource in the XOP' s resource fork or NULL
if thereis no such resource.

This routine does not search any other resource forks.

Handle

GetXOPNamedResource (resType, name)

long resType; // Resource type, e.g., 'DLOG'

char* name; // C string containing resource name

Thisroutine is supported on Macintosh only. Thereis no Windows equivalent.

GetX OPNamedResource returns a handle to the specified resource in the XOP' s resource fork or
NULL if thereis no such resource.

This routine does not search any other resource forks.

void

GetXOPIndString (text, strID, item)

char* text; // C string to hold up to 256 characters

int strID; // ID of STR# resource in XOP's resource fork

int item; // String number within resource starting from one

Returns the specified string from the specified STR# resource in the XOP' s resource fork viathe
text parameter. This routine does not search any other resource forks.

This routine can be used on both Macintosh and Windows.

447

Chapter 13 — XOPSupport Routines - FIFOs

448

Routines for XOPs That Use FIFOs

Igor Pro provides First-In-First-Out (FIFO) objects for use in data acquisition tasks where a
continuous stream of datais generated and where you want to monitor the datain real-time with a
visual chart recorder-like display. If you have a continuous stream of data but you don’t want to
use a chart display to monitor it, then you can do your own thing and you do not need to involve
FIFOs.

There are two waysto get acquired data from an XOP into a FIFO.

If the datarate is slow, say less than 10 values/second, then you could set up an Igor Pro
background task to call your XOP to get data. In this case your XOP does not need to use the
FIFO routines. There are problems associated with this technique but it is much easier than
directly writing into FIFOs. See the Igor Pro manual for a discussion of background tasks.

If the datais coming in quickly, then you will need to directly write datainto an Igor Pro FIFO
object. You can get afeel for the FIFO technique by examining the Sound Chart Demo example
experiment ("Igor Pro Folder:Examples.Movies & Audio:Sound Input™).

To use the FIFO technique, you will need to set up an idle routine in your XOP that gets the
handle to a given FIFO object, writes datato it and then notifies Igor Pro of that fact. Sinceidle
routines are only called when Igor Pro “gets a chance”, you will have to define your own buffer
to store data until the next time your idle routineis called. Under some conditions, it can be many
seconds between idle calls. Y our buffer has to be large enough to handle this amount of data.

If you decide to use a FIFO, you can contact WaveMetrics to get the source code for the
Soundinput XOP. Thisold Mac OS 9 XOP has been superceded by the built-in SoundinRecord
operation but it can still serve as an example.

In the Soundinput XOP, a pointer based FIFO pre-buffer is defined as struct PtrFIFO which is
defined in the NamedFIFO.h file. This buffer is allocated when an Igor Pro procedure calls the

Sl StartChart external operation in the X OP. The buffer isfilled with sound data via the interrupt
completion routine SndCompletion. Theidle routine, IdleFIFO, transfers data from the pre-buffer
to the Igor Pro FIFO. IdieFIFO calls GetCheckFIFO to get the handle to the FIFO and to perform
sanity checks. GetCheckFIFO in turn calls the X OPSupport routine GetNamedFIFO to fetch the
FIFO handle. 1dleFIFO then transfers data from the pre-buffer to the FIFO and calls the
XOPSupport routine MarkFIFOUpdated to notify Igor Pro that new data has been put in the
FIFO.

There is additional documentation for FIFOs in the Igor Pro manual. X OP support for FIFOs
consists of the following routines plus the NamedFIFO.h file in the X OPSupport folder.

Chapter 13 — XOPSupport Routines - FIFOs

struct NamedFIFO **
GetNamedFIFO (name)
char name [MAX OBJ NAME+1] ; // C string to receive name

Returns the named FIFO handle or NULL if none of that name exists.

FIFO handles belong to Igor so you should not dispose them.

void

MarkFIFOUpdated (fifo)

struct NamedFIFO **fifo; // Handle to an existing FIFO

Tells Igor Pro that you have modified the datain a FIFO.

Call this after putting datain a named FIFO so that Igor Pro will refresh chart gadgets.

449

Chapter 13 — XOPSupport Routines - Numeric Conversion

Numeric Conversion Routines

These X OPSupport routines convert between various numeric formats and are useful for
importing or exporting data as well as for other purposes. They are defined in the file
XOPNumericConversion.c.

Some of the routines take a pointer to some input data and a pointer to a place to put the
converted output data. Numbers can be converted in place. That is, the pointer to the input data
and the pointer to the output data can point to the same array in memory. Make sure that the array
is big enough to hold the data in the output format.

These routines are used in the GBLoadWave, VDT2 and NIGPIB2 sample XOPs.

XOP Toolkit routines use two different ways to specify a number type:
* XOP Toolkit number format code plus a count of bytes per number.
* Igor number type code.

This table shows how these two methods rel ate:

Number Type XOP Toolkit Igor Code

Code/Count
Double-precision floating point IEEE FLOAT, 8 NT_FP64
Single-precision floating point IEEE_FLOAT, 4 NT_FP32
Long integer (32 bits) SIGNED_INT, 4 NT_132
Short integer (16 bits) SIGNED _INT, 2 NT 116
Byte integer (8 hits) SIGNED_INT, 1 NT 18
Unsigned long integer (32 bits) UNSIGNED_INT, 4 NT 132 |NT_UNSIGNED
Unsigned short integer (16 bits) UNSIGNED_INT, 2 NT_I16 | NT_UNSIGNED
Unsigned byte integer (8 bits) UNSIGNED_INT, 1 NT_I8 | NT_UNSIGNED

Originaly, Igor supported only single-precision (NT_FP32) and double-precision (NT_FP64)
floating point. Thus, to describe other types, the XOP Toolkit codes were invented.

450

Chapter 13 — XOPSupport Routines - Numeric Conversion

int

ConvertData (src,dest,numValues, srcBytes, srcFormat, destBytes,destFormat)
void* src; // Input data in format specified by srcFormat
void* dest; // Output data in format specified by destFormat
long numValues; // # of values to convert

int srcBytes; // # of bytes in a point of input (1, 2, 4, or 8)
int srcFormat; // XOP Toolkit code for input data format

int destBytes; // # of bytes in a point of output (1, 2, 4, or 8)
int destFormat; // XOP Toolkit code for output data format

This routine calls the appropriate conversion routine based on the srcBytes, srcFormat, destBytes
and destFormat parameters.

ConvertData can handle any combination of the legal Igor numeric data types. It takes the
description of source and destination data types in the form of an XOP Toolkit numeric format
code, defined in XOPSupport.h, and a number of bytes. Both the source and destination can be
any of the following:

format = IEEE FLOAT, numBytes = 8 // Double-precision IEEE float
format = IEEE FLOAT, numBytes = 4 // Single-precision IEEE float
format = SIGNED INT, numBytes = 4 // 32 bit signed integer
format = SIGNED INT, numBytes = 2 // 16 bit signed integer
format = SIGNED INT, numBytes = 1 // 8 bit signed integer

format = UNSIGNED INT, numBytes = 4 // 32 bit unsigned integer
format = UNSIGNED INT, numBytes = 2 // 16 bit unsigned integer
format = UNSIGNED INT, numBytes = 1 // 8 bit unsigned integer

Returns zero if everything is OK, 1 if the conversion is not supported (e.g., converting to 2 byte
floating point), -1 if no conversion is needed (source format == dest format).

ConvertDatarelies on alarge number of low-level conversion routines with names of the form
<Source Type>To<Dest Type> where both <Source Type> and <Dest Type> can be any of the
following:

Double, Float, Long, Short, Byte, UnsignedL ong, UnsignedShort, UnsignedByte
For most uses, you should use the high level ConvertData routine.

451

Chapter 13 — XOPSupport Routines - Numeric Conversion

452

int

ConvertData2 (src, dest, numValues, srcDataType, destDataType)

void* src; // Input data in format specified by srcDataType
void* dest; // Output data in format specified by destDataType
long numValues; // # of values to convert

int srcDataType; // Igor code for input data format

int destDataType; // Igor code for output data format

This routine calls the appropriate conversion routine based on the srcDataType and destDataType
parameters.

ConvertData2 can handle any combination of the legal Igor numeric data types. It takes the
description of source and destination data types in the form Igor number type codes, defined in
IgorX OP.h. Bath the srcDataType and destDataType can be any of the following:

NT FP64 // Double-precision IEEE float
NT FP32 // Single-precision IEEE float
NT I32 // 32 bit signed integer

NT Il6 // 16 bit signed integer

NT I8 // 8 bit signed integer

NT FP32 | NT UNSIGNED // 32 bit unsigned integer

NT I16 | NT UNSIGNED // 16 bit unsigned integer

NT I8 | NT UNSIGNED // 8 bit unsigned integer

The number type should not include NT_CMPLX. If the datais complex, the numValues
parameter should reflect that.

Returns zero if everything is OK, 1 if the conversion is not supported (e.g., converting to 2 byte
floating point), -1 if no conversion is needed (source format == dest format).

int

NumTypeToNumBytesAndFormat (numType, numBytesPerValuePtr, dataFormatPtr,
isComplexPtr)

int numType; // Igor number type code.

int* numBytesPerValuePtr; // Output: number of bytes per value.

int* dataFormatPtr; // Output: XOP Toolkit data format code.

int* isComplexPtr; // Output: True if complex.

This routine converts standard Igor number type codes (e.g., NT_FP64), which are defined in
IgorX OP.h, into the XOP Toolkit number format codes (IEEE_FLOAT, SIGNED_INT, and
UNSIGNED_INT), defined in XOPSupport.h.

The value returned via numBytesPerVauePtr is the number of bytes per value, not the number of
bytes per point. In other words, if a point of awave is complex, it will take twice as many bytes
as returned via numBytesPerV aluePtr .

Chapter 13 — XOPSupport Routines - Numeric Conversion

int

NumBytesAndFormatToNumType (numBytesPerValue, dataFormat, numTypePtr)
int numBytesPerValue; // Number of bytes per value.

int dataFormat; // XOP Toolkit data format code.

int* numTypePtr; // Output: Igor number type code.

Thisroutine is converts XOP Toolkit dataformat codes (IEEE_FLOAT, SIGNED_INT, and
UNSIGNED _INT), defined in XOPSupport.h, into standard Igor number type codes (e.g.,
NT_FP64), defined in IgorXOP.h.

void

ScaleData(dataType, dataPtr, offsetPtr, multiplierPtr, numValues)
int dataType; // Code for input data format

void* dataPtr; // Pointer to data to be scaled
double* offsetPtr; // Pointer to the offset value
double* multiplierPtr; // Pointer to the multiplier value
long numValues; // Code for output data format

Scales the data pointed to by dataPtr by adding the offset and multiplying by the multiplier.

dataTypeisone of the Igor numeric type codes defined in IgorXOP.h (same as for
ConvertData?).

The NT_CMPLX bit must not be set. If the datais complex, this must be reflected in the
numValues parameter.

ScaleDatarelies on a number of low-level scaling routines with names of the form Scale<Type>
where <Type> can be any of the following:

Double, Float, Long, Short, Byte, UnsignedL ong, UnsignedShort, UnsignedByte
For most uses, you should use the high level ScaleData routine.
void

ScaleClipAndRoundData (dataType, dataPtr, numValues, offset, multiplier,
dMin, dMax, doRound)

int dataType; // Code for input data format

void* dataPtr; // Pointer to data to be scaled

long numValues; // Code for output data format

double offset; // Offset value

double multiplier; // Multiplier value

double dMin; // Min value for clipping

double dMax; // Max value for clipping

int doRound; // I1If non-zero, rounding is performed

Scales the data pointed to by dataPtr by adding the offset and multiplying by the multiplier. If
offset is 0.0 and multiplier is 1.0, no scaling is done.

453

Chapter 13 — XOPSupport Routines - Numeric Conversion

454

Clipsto the specified min and max. If minis-INF and max is+INF, no clipping is done. If min
and max are both zero, integer datais clipped to the minimum and maximum value that can be
represented by the data type.

If doRound is non-zero, the datais rounded to the nearest integer.
All calculations are done in double precision.

dataType is one of the Igor numeric type codes defined in IlgorX OP.h (same as for
ConvertData?).

The NT_CMPLX bit must not be set. If the datais complex, this must be reflected in the
numV alues parameter.

void

FixByteOrder (p, bytesPerPoint, numValues)

void* p; // Pointer to input data of any type
int bytesPerPoint; // Bytes in one point of input format
long numValues; // Number of values to fix

The routine converts data from Motorola (high byte first) to Intel (low byte first) format or vice-
versa.

Chapter 13 — XOPSupport Routines - Object Names

Routines for Dealing With Object Names

If your XOP creates a new data object (awave, variable or datafolder) you need to provide a
legal name. The name must also be unique, unless you are overwriting an existing object. The
CreateV alidObjectName routine, described below, is appropriate for most uses and does all
necessary legality and conflict checking.

If you pass a string to Igor for execution as a command, using FinishDialogCmd, XOPCommand
or XOPSilentCommand, you must quote liberal object names. Use PossiblyQuoteName and
CatPossiblyQuotedName for this purpose. See the Igor Pro manual for general information on
liberal names.

int

UniqueName (baseName, finalName)

char* baseName; // C string containing base name

char* finalName; // C string containing new, unigque name

New X OPs should use CreateV aidDataObjectName or UniqueName2 instead of UniqueName.
UnigueName generates a name that does not conflict with an existing name.
Thisis used by operations that want to create waves and auto-name them (like LoadWaves/A).

ThefinalName is derived by appending one or more digits to the baseName. finalName must be
ableto hold MAX_OBJ NAME+1 bytes.

Make sure that the baseName is not too long. Otherwise, the finalName could be too long to be a
legal name.

The function result is the number that was appended to the baseName to make the finalName.

int

UniqueName2 (nameSpaceCode, baseName, finalName, suffixNumPtr)

int nameSpaceCode; // Usually MAIN NAME SPACE. See IgorXOP.h
char* baseName; // Base name to use for creating unique name
char* finalName; // Receives unique name

long suffixNumPtr; // Keeps track of last suffix used

If your goal isto generate avalid object name that you can use to create a data object, consider
using CreateV aidDataObjectName instead of this routine.

UnigueName2 generates a name that does not conflict with an existing name.
The function result is 0 if OK, -1 for a bad nameSpaceCode or some other error code.

Thisis an improved version of UniqueName. Given a base name (like "wave") UniqueName2
returns a name (like "wave3") viafinalName that does not conflict with any existing names.
finalName must be able to hold MAX_OBJ NAME+1 bytes.

455

Chapter 13 — XOPSupport Routines - Object Names

456

*suffixNumPtr is both an input and an output. Its purpose isto speed up the search for unique
names when creating a batch of names in aloop. The number appended to make the name unique
will be * suffixNumPtr or greater. Igor sets * suffixNumPtr to the number Igor used to make the
name unique. Typically, you should set *suffixNumPtr to zero before your first call to
UnigueName2.

nameSpaceCode is MAIN_NAME_SPACE for Igor’ s main name space (waves, variables,
windows).

nameSpaceCode is DATA_FOLDER_NAME_SPACE for datafolders.
See IgorXOP.h for other less frequently-used name space codes.

int

SanitizeWaveName (waveName, column)

char* waveName; // Input and output wave name

long column; // Number of column being loaded or zero

New X OPs should use the CleanupName, CheckName and CreateV alidDataObjectName routines
instead of SanitizeWaveName.

SanitizeWaveName is intended mainly for use in file-loader X OPs such as Simplel oadWave but
may have other uses.

Given apointer to a C string containing a proposed wave name, SanitizeWaveName changesit to
make it avalid wave name if necessary. It returns 1 if it had to make a change, 0 if name was OK
to begin with. waveName must be able to hold MAX_OBJ NAME+1 bytes.

First SanitizeWaveName truncates the proposed nameif it istoo long. Then it makes sure that the
first character is alphabetic. Then it replaces any subsequent characters that are not alphanumeric
with underscore.

column should be the number of the column being loaded or the number of the wave in a set of
waves or zero if this does not apply to your XOP.

Chapter 13 — XOPSupport Routines - Object Names

int

CleanupName (beLiberal, name, maxNameChars)
int belLiberal;

char* name;

int maxNameChars;

If your goal isto generate avalid object name that you can use to create a data object, consider
using CreateV alidDataObjectName instead of this routine.

CleanupName changes the name, if necessary, to make it alegal Igor object name.

For most uses, pass MAX_OBJ NAME for the maxNameChars parameter. name must be able to
hold maxNameChars+1 bytes.

Igor Pro 3.0 and later allows wave and data folder names to contain characters, such as space and
dot, that were previously illegal in names. We call this*“liberal” name rules.

If beLiberal is non-zero, CleanupName uses liberal name rules. Liberal rules are allowed for
wave and data folder names but are not allowed for string and numeric variable names so pass
zero for belLiberal for these objects.

If you are going to use the name in Igor’s command line (via the Execute operation or viathe
XOPCommand or XOPSilentCommand callbacks), and if the name uses liberal rules, the name
needs to be single-quoted. In these cases, you should call PossiblyQuoteName after calling
CleanupName.

int

CheckName (dataFolderH, objectType, name)
DataFolderHandle dataFolderH;

int objectType;

char name [MAX OBJ NAME+1];

If your goal isto generate avalid object name that you can use to create a data object, consider
using CreateV aidDataObjectName instead of this routine.

CheckName checks the name for legality and uniqueness.

If dataFolderH isNULL, it looks for conflicts with abjects in the current data folder. If it is not
NULL, it looks for conflicts in the folder specified by dataFolderH.

objectTypeis one of the following (defined in IgorX OP.h):

WAVE OBJECT, VAR _OBJECT (numeric variable), STR OBJECT (string variable)
GRAPH_OBJECT, TABLE OBJECT, LAYOUT OBJECT

PANEL OBJECT, NOTEBOOK OBJECT

DATAFOLDER OBJECT, PATH OBJECT, PICT OBJECT

The function result is O if the nameislegal and isnot in conflict with an existing object.

Returns an Igor error code otherwise.

457

Chapter 13 — XOPSupport Routines - Object Names

int

CreateValidDataObjectName (

DataFolderHandle dataFolderH, // Handle to data folder or NULL
char* inName, // Input: Proposed name

char* outName, // Output: Valid name

long* suffixNumPtr, // Used to make name unique

int objectType, // Type code from IgorXOP.h

int beliberal, // 1 to allow liberal names

int allowOverwrite, // 1 1f it is OK to overwrite object
int inNameIsBaseName, // 1 1if inName needs digits appended
int printMessage, // 1 to print message about conflict
int* nameChangedPtr, // Output: 1 if name changed

int* doOverwritePtr) // Output: 1 if need to overwrite object

Thisroutine is designed to do all of the nasty work needed to get alegal name for a given object.
It cleans up illegal names and resolves name conflicts.

It returns in outName a name that can be safely used to create a data object of a given type (wave,
string variable, numeric variable, data folder).

inName is the proposed name for the object or a base name to which one or more digitsisto be
added.

outName is the name after possible cleanup and uniquification. outName must be able to hold
MAX_OBJ NAME+1 bytes.

*suffixNumPtr is both an input and an output. Its purpose is to speed up the search for unique
names when creating a batch of names in aloop. The number appended to make the name unique
will be * suffixNumPtr or greater. Igor sets* suffixNumPtr to the number Igor used to make the
name unique. Typically, you should set *suffixNumPtr to zero before your first call to
CreateValidDataObject.

dataFolderH is a handle to a data folder or NULL to use the current data folder.
objectType is one of the following:
WAVE_OBJECT, VAR _OBJECT, STR_OBJECT, DATAFOLDER_OBJECT

beLiberal is1if you want to allow liberal names or O if not. If the object typeisVAR_OBJECT
or STR_OBJECT, the name will not be liberal, even if beLiberal is 1. Igor alows only wave and
data folder namesto be liberal.

alowOverwriteis 1if itis OK for outName to be the name of an existing object of the same type.

inNamel sBaseName should be 1 if inName is a base name (e.g., "wave") to which a suffix (e.g.,
"0") must always be added to produce the actua name (e.g., "waveQ"). If inNamelsBaseName is
0 then no suffix will be added to inName unlessit is needed to make the name unique.

458

Chapter 13 — XOPSupport Routines - Object Names

printMessageis 1 if you want CreateV alidDataObjectName to print a message in Igor’s history
areaif an unexpected name conflict occurs. A message is printed if you are not using a base name
and not allowing overwriting and there is a name conflict. A message is also printed if a conflict
with an object of a different type prevents the normal name from being used.

CreateV alidDataObjectName sets * nameChangedPtr to the truth that outName is different from
inName.

It sets* doOverwritePtr to the truth that outName is the name of an existing object of the same
type and allowOverwriteis 1.

inName and outName can point to the same array if you don’t want to preserve the original name.
Both must be big enough to hold MAX_OBJ NAME+1 bytes.

The function result isO if OK or an error code.
Example

Thisisasimplified section of code from GBL oadWave which uses CreateV alidDataObjectName.
Ipp is apointer to a structure containing parameters for the load operation. ciHandle is alocked
handle containing an array of records, one for each wave to be created.

long column, suffixNum;

char base[MAX OBJ NAME+1];
int nameChanged, doOverwrite;
int result;

strcpy (base, "wave") ; // Base name for waves.
suffixNum = 0;
for (column = 0; column < lpp->numArrays; column++) {
ciPtr = *ciHandle + column;
ciPtr->points = lpp->arrayPoints;

strcpy (ciPtr->waveName, base) ;

// Take care of illegal or conflicting names.

result = CreateValidDataObjectName (NULL, ciPtr->waveName,
ciPtr->waveName, &suffixNum, WAVE OBJECT, 1,
lpp->flags & OVERWRITE, 1, 1, &nameChanged, &doOverwrite) ;

ciPtr->wavePreExisted = doOverwrite;

if (result == 0)
result = MakeAWave (ciPtr->waveName, lpp->flags, &ciPtr->waveHandle,
lpp->arrayPoints, lpp->outputDataType) ;

if (result) // Couldn't make wave (probably low memory) ?
<Clean up>;
return result;

459

Chapter 13 — XOPSupport Routines - Object Names

460

int
PossiblyQuoteName (name)
char name [MAX OBJ NAME+2+1];

PossiblyQuoteName puts single quotes around the Igor object name if they would be needed to
use the namein Igor’s command line.

Igor Pro 3.0 and later allows wave and data folder names to contain characters, such as space and
dot, that were previoudly illegal in names. We call this“liberal” name rules.

If an object has such a name, you must single-quote the name to useit in Igor’s command line.
Thisincludes using it in the Execute operation or in the XOPCommand, X OPSilentCommand, or
FinishDialogCmd X OPSupport routines. Thus, if you are going to use awave or data folder name
for this purpose, you should call PossiblyQuoteName to add the quotes if needed.

NOTE: name must be able to hold two additional bytes (MAX_OBJ NAME+2 plusthe
terminating null).

NOTE: Liberal rulesare not allowed for string and numeric variable names.
PossiblyQuoteName returns O if the nameis not liberal, 1 if it isliberal.

int

CatPossiblyQuotedName (str, name)

char* str;
char name [MAX OBJ NAME+2+1];

Adds the specified Igor object name to the end of the string. If necessary, puts single quotes
around the name so that it can be used in the Igor command line.

Use this to concatenate a wave name to the end of a command string when the wave name may be
aliberal name that needs to be quoted to be used in the command line.

See PossiblyQuoteName for details on liberal names.
Remember that the quoted name will take an extra two bytes. str must be big enough to hold it.
CatPossiblyQuotedName returns O if the nameisnot liberal, 1 if it isliberal.

Example

char waveName [MAX OBJ NAME+1]; // This contains a wave name.
char cmd[256] ;

strcpy (cmd, "Display ");

CatPossiblyQuotedName (cmd, waveName) ;

XOPSilentCommand (cmd) ;

Chapter 13 — XOPSupport Routines - Color Tables

Color Table Routines

These routines were added to the XOP Toolkit for use by advanced programmers who want to
present a user interface with the same color tables as Igor itself presents. An exampleisthe
Surface Plotter X OP which allows the user to choose from a set of Igor color tables.

The Surface Plotter calls GetlndexedlgorColorTableNameto display alist of Igor color tablesin
a popup menu. When it needs to know what colors arein atable, it calls GetNamedigorColor-
TableHandle to get a color table handle, GetlgorColorTablelnfo to find the number of colorsin
the table, and GetlgorColorTableValues to find the actual colors.

int
GetIndexedIgorColorTableName (index, name)
int index; // Zero-based index of a color table

char name [MAX OBJ NAME+1]; // Output: name of that color table

nn

Returns via name the name of a color table indicated by the index or " if theindex isinvalid.

Valid indices start from zero. Y ou can find the maximum valid index by calling this routine with
increasing indices until it returns an error.

The function result is 0 if OK or anon-zero error code if theindex isinvalid.

int

GetNamedIgorColorTableHandle (name, ictHPtr)

const char* name; // Name of a color table
IgorColorTableHandle* ictHPtr; // Handle to color table info

Returns via *ictHPtr a handle to an Igor color table or NULL in case of error.
The returned handle belongs to Igor. Do not modify or deleteit.
The name parameter is case insensitive.

Igor Pro 4 contained the following color tables: Rainbow, Grays, Y ellowHot, BlueHot,
BlueRedGreen, RedWhiteBlue, PlanetEarth, Terrain. Igor Pro 5 added many more color tables.
Y ou can find the names of al color tables using GetlndexedlgorColorTableName.

The function result isO if OK or anon-zero error code.

461

Chapter 13 — XOPSupport Routines - Color Tables

462

int

GetIgorColorTableInfo (ictH, name, numColorsPtr)

IgorColorTableHandle ictH; // Handle from GetNamedIgorColorTableHandle
char name [MAX OBJ NAME+1]; // Output: name of color table

int* numColorsPtr; // Output: number of colors in table

Provides access to the name and the number of colorsin the Igor color table specified by ictH.
ictH isahandle that you got by calling GetNamedIgorColorTableHandle.

If you don't want to know the name, pass NULL for name. If you don't want to know the number
of colors, pass NULL for numColorsPtr.

The function result is 0 if OK or anon-zero error code.
int

GetIgorColorTableValues (ictH, startIndex, endIndex, updateVals, csPtr)
IgorColorTableHandle ictH; // Handle from GetNamedIgorColorTableHandle

int startIndex; // Index of first color of interest
int endIndex; // Index of last color of interest
int updateVals;

IgorColorSpec* csPtr; // Output: Color values go here

Returns via csPtr a description of the colors associated with the Igor color table specified by ictH.
ictH isahandle that you got by calling GetNamedigorColorTableHandle.

startindex and endindex specify the indices of the colors for which you want to get a description.
startlndex must be between 0 and the number of colorsin the table minus one. endindex must be
between startindex and the number of colors in the table minus one. Y ou can find the number of

colorsin the table using GetlgorColorTablelnfo.

The IgorColorSpec structure contains an RGBColor field which identifies the RGB color for a
color table entry with a particular index. These structures are defined in IgorXOP.h.

The value field of the IgorColorSpec structure tells you the pixel value that would need to be
written to video RAM to get the associated color to appear on the screen when the monitor isin
16 or 256 color mode. It istypically used by advanced programmers who are writing directly to
offscreen bitmap memory.

However, when amonitor isrunning in 16 or 256 color mode, this value is invalidated whenever
the system changes the hardware color lookup table, which can happen at any time. If you pass
non-zero for the updateV als parameter, then Igor will update the value field for each color before
returning it to you and it will be accurate until the next time the system changes the hardware
color lookup table. If you pass zero for the updateV als parameter, then Igor will not update the
valuefield and it islikely to be stale.

Updating the value fields takes time so you should pass non-zero for the updateV a s parameter
only if you really need accurate pixel values. For example, if you just want to know what RGB

Chapter 13 — XOPSupport Routines - Color Tables

colors appear in a particular color table then you don't need the pixel values and should pass O for
the updateV al's parameter. On the other hand, if you are writing into an offscreen bitmap in

preparation for blasting it to the screen, then you need accurate pixel values and you should pass
1 for updateVals.

The function result is 0 if OK or a non-zero error code.

463

Chapter 13 — XOPSupport Routines - Procedures

Routines for Dealing With Igor Procedures

These routines alow an XOP to get and set procedures in the Igor procedure window. Most
XOPs will not need these routines.

int

GetIgorProcedurelList (Handle* hPtr, long flags)
Handle* hPtr;

long flags;

The main use for this routine is to check if a particular macro or function existsin the Igor
procedure windows.

GetlgorProcedurelist returns via* hPtr a handle to a semicolon-separated list of procedure
names. Depending on the flags parameter, the list may contain names of macros, names of user-
defined functions, or names of both macros and user-defined functions.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handleand a C String on page 321.

This handle belongsto you, so call DisposeHandle to dispose it when you no longer need it.
If Igor can not build the ligt, it returns anon-zero error code and sets * hPtr to NULL.
The flags parameter is defined as follows:

Bit 0 If set, GetlgorProcedureList will list al macros. If cleared, it
will ignore al macros.

Bit 1 If set, GetlgorProcedure will list all user-defined functions. If
cleared, it will ignore all user-defined functions.

All other bits Reserved for future use and must be set to 0.

Igor will be unableto build the list if asyntactical error in the procedure files prevents Igor from
successfully scanning them. In this case, GetlgorProcedureList will return NEED_COMPILE.

GetlgorProcedureList can also return NOMEM if it runs out of memory. Thisisunlikely.

Future versions of GetlgorProcedurelist may return other error codes so your XOP should not
crash or otherwise grossly misbehave if it receives some other error code.

464

Chapter 13 — XOPSupport Routines - Procedures

int

GetIgorProcedure (procedureName, hPtr, flags)
const char* procedureName;

Handle* hPtr;

long flags;

The main use for thisroutine isto check if a particular macro or function existsin the Igor
procedure windows.

If Igor can find the procedure (macro or function) specified by procedureName, Getlgor-
Procedure returns via * hPtr a handle to the text for the procedure and returns aresult of 0. The
handle will contain the text for the specified procedure with a carriage return at the end of each
line.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handle and a C String on page 321. If you pass the handle
back to Igor, you must remove the null terminator and unlock the handle.

This handle belongsto you, so call DisposeHandle to dispose it when you no longer need it.
If Igor can not find the procedure, it returns a non-zero error code and sets * hPtr to NULL.
The flags parameter is defined as follows:

Bit 0 If set, GetlgorProcedure will look for macros with the specified
name. If cleared, it will ignore all macros.

Bit 1 If set, GetlgorProcedure will look for user-defined functions
with the specified name. If cleared, it will ignore all user-
defined functions.

All other bits Reserved for future use and must be set to 0.

Igor will be unable to find the procedure if there is no such procedure. In this case,
GetlgorProcedure will return NO_MACRO_OR_FUNCTION.

Igor will be unable to find the procedure if a syntactical error in the procedure files prevents Igor
from successfully scanning them. In this case, GetlgorProcedure will return NEED_COMPILE.

GetlgorProcedure can also return NOMEM if it runs out of memory. Thisisunlikely.

Future versions of GetlgorProcedure may return other error codes so your XOP should not crash
or otherwise grossly misbehave if it receives some other error code.

465

Chapter 13 — XOPSupport Routines - Procedures

466

int

SetIgorProcedure (procedureName, h, flags)
const char* procedureName;

Handle h;

long flags;

Thisroutineis used by very advanced X OPs, like the Surface Plotter, that add a target window
typeto Igor.

The handle h belongs to Igor. Once you pass it to SetlgorProcedure, you must not modify it,
access it, or dispose of it.

See Adding XOP Target Windows on page 257 for further information.

enum CloseWinAction
DoWindowRecreationDialog (procedureName)
char* procedureName;

Thisroutine is used by very advanced X OPs, like the Surface Plotter, that add a target window
typeto Igor. See Adding XOP Target Windows on page 257 for further information.

Chapter 13 — XOPSupport Routines - Procedures

int

GetFunctionInfo (name, fip)
const char* name;
FunctionInfobPtr fip;

Returns information that you need in order to call an Igor user function or an external function
from an XOP. Y ou might want to do this, for example, to implement your own user-defined curve
fitting agorithm. Thisis an advanced feature that most XOP programmers will not need.

For an overview see Calling User-Defined and External Functions on page 285.

name is the name of an existing user or external function. If there is no such function,
GetFunctioninfo returns an error. If the function is a user function and procedures are not in a
compiled state, GetFunctionInfo returns an error. If everything is OK, GetFunctionlnfo returns
zero.

The information returned by GetFunctionlnfo should be used and then discarded. If the user does
anything to cause procedures to be compiled then the values returned by GetFunctionlnfo are no
longer valid.

GetFunctionlnfo returns via fip->compilationindex a value that you will pass to CallFunction.
Thisvalueis used to make sure that procedures have not been changed between the time you call
GetFunctioninfo and the time you call CallFunction.

GetFunctionlinfo returns via fip->functionl D a value which you will pass to CallFunction to
specify which user function you want to execute.

GetFunctioninfo returns via fip->subType a code that identifies certain specia purpose functions.
The value returned currently has no use but may be used in the future.

GetFunctionlnfo returns via fip->isExternal Function a value that is non-zero for external
functions and zero for user functions. Thisfield isfor your information only. Y our code will be
the same for external and user functions.

GetFunctionlinfo returns via fip->returnType one of the following codes:

NT FP64: Return value is a double-precision number
NT FP64 | NT CMPLX: Return value is a complex double-precision number
HSTRING TYPE: Return value is a string

GetFunctionlnfo returns via fip->numOptional Parameters, fip->numRequiredParameters and fip-
>total NumParameters the number of optional, required and total parameters for the function.
Currently, an XOP can call a user function that has optional parameters but the XOP can not pass
optional parameters to the function. In other words, it must pass the required parameters only.

GetFunctionlnfo returns via fip->parameterTypes an array of parameter types. GetFunctioninfo
stores a parameter type value in elements 0 through fip->totalNumParameters-1. Elements fip-
>totalNumParameters and higher are undefined so you must not use them.

467

Chapter 13 — XOPSupport Routines - Procedures

468

Y ou must use the CheckFunctionForm X OPSupport routine to make sure that the function is of
the form you want. Y ou normally don't need to examine the parameter type values directly, but in
case you are curious, see the comments for GetFunctionlnfo in X OPSupport.c.

Parameter type values for numeric, complex numeric and string parameters may be ORed with
FV_REF _TYPE. Thisindicates that the corresponding parameter is "pass-by-reference”, meaning
that the function can change the value of that parameter.

Added for Igor Pro 5.00. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

int

GetFunctionInfoFromFuncRef (fRef, fip)
FUNCREF fRef;

FunctionInfobPtr fip;

Returns information that you need in order to call an Igor user function or an external function
from an XOP. Y ou might want to do this, for example, to implement your own user-defined curve
fitting algorithm. Thisis an advanced feature that most X OP programmers will not need.

For an overview see Calling User-Defined and External Functions on page 285.
fRef isthe value of a FUNCREF field in an Igor Pro structure passed to your X OP as a parameter.

GetFunctionl nfoFromFuncRef will return an error if the function is a user function and
procedures are not in acompiled state. If everything is OK, GetFunctionl nfoFromFuncRef returns
zero.

GetFunctionlnfoFromFuncRef works just like GetFunctionlnfo except that you passin a
FUNCREF instead of the name of the function. See the documentation for GetFunctionlnfo for
further details.

Added for Igor Pro 5.03. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Chapter 13 — XOPSupport Routines - Procedures

int

CheckFunctionForm(fip, requiredNumParameters, requiredParameterTypes,
badParameterNumberPtr, returnType)

FunctionInfobPtr fip;

int requiredNumParameters;

int requiredParameterTypes|[];

int* badParameterNumberPtr;

int returnType;

Checksthe form (number of parameters, types of parameters and return type) of an Igor user-
defined or external function against the required form. Thisis an advanced feature that most XOP
programmers will not need.

For an overview see Calling User-Defined and External Functions on page 285.

Y ou must call CheckFunctionForm before calling CallFunction to make sure that the function
you are calling has the form you expect. Otherwise you may cause a crash.

fip is pointer to a structure set by calling GetFunctionlnfo.
requiredNumParameters is the number of parameters you expect the function to have.
requiredParameterTypesis an array in which you have set each value to one of the following:

NT FP64 The parameter must be scalar numeric

NT FP64 | NT CMPLX The parameter must be complex numeric
HSTRING_ TYPE The parameter must be a string

WAVE TYPE The parameter must be a scalar numeric wave
WAVE TYPE | NT CMPLX The parameter must be a complex numeric wave
TEXT _WAVE_ TYPE The parameter must be a text wave
FV_FUNC_TYPE The parameter must be a function reference

FV_STRUCT TYPE | FV_REF TYPE The parameter must be a structure

The number of elements in requiredParameterTypes must be at |east equal to
requiredNumParameters.

If the parameter must be pass-by-reference, use FV_REF_TY PE in addition to the values above.
For example:

NT FP64 | FV_REF TYPE

NT FP64 | NT CMPLX | FV_REF_TYPE
HSTRING TYPE | FV_REF TYPE
FV_STRUCT TYPE | FV_REF TYPE

Pass-by-reference is applicable to numeric, string and structure parameters only. Numeric and
string parameters can be passed by value or passed by reference but structure parameters are
aways passed by reference.

If you do not want CheckFunctionForm to check a particular parameter, pass-1 in the
corresponding element of the requiredParameter Types array.

469

Chapter 13 — XOPSupport Routines - Procedures

470

Calling afunction with at structure parameter requires Igor Pro 5.04 or later. For background
information see Structure Parameter s on page 168.

When dealing with a structure parameter, CheckFunctionForm can not guarantee that your XOP
and the function you are calling are using the same definition of the structure. See Structure
Par ameter s on page 168 for some suggestions for dealing with this problem.

If the function is an external function which takes a wave parameter, there is no way to know if
the external function expects a numeric wave or atext wave. Consequently, CheckFunctionForm
does not distinguish between numeric and text waves for external functions. The external function
itself is supposed to check the type of the wave passed in at runtime and return an error if it isthe
wrong type.

returnTypeisthe required return type of the function which must be one of the following:

NT FP64
NT FP64 | NT CMPLX
HSTRING TYPE

If you do not want CheckFunctionForm to check the return type, pass -1 asthe returnType
parameter.

CheckFunctionForm sets * badParameterNumberPtr to the zero-based index of the first parameter
that does not match the required type or to -1 if all parameters match the required type.

It returns O if the form matches the requirements or an error code if not.

If afunction parameter type does not match the required parameter type, the error code returned
will indicate the type of parameter required but not which parameter type was bad. If you want to
inform the user more specificaly, use the value returned via badParameterNumberPtr to select
your own more specific error code. If the error was a parameter type mismatch,

* badParameterNumberPtr will contain the zero-based index of the bad parameter. Otherwise,

* badParameterNumberPtr will contain -1.

Added for Igor Pro 5.00. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Chapter 13 — XOPSupport Routines - Procedures

int

CallFunction (fip, parameters, resultPtr)
FunctionInfobPtr fip;

void* parameters;

void* resultPtr;

Callsthe Igor user-defined or external function identified by fip. Thisis an advanced feature that
most X OP programmers will not need.

For an overview see Calling User-Defined and External Functions on page 285.
fip isapointer to a Functionlinfo structure whose values were set by calling GetFunctionlnfo.

fip->compilationindex is used by CallFunction to make sure that procedures were not recompiled
after you called GetFunctioninfo. If procedures were recompiled, then the information in the
structure may beinvalid so CallFunction returns BAD_COMPILATION_INDEX.

parametersis a pointer to a structure containing the values that you want to pass to the function.
These values must agree in type with the function's parameter list, as indicated by the parameter
information that you obtain via GetFunctioninfo. To guarantee this, you must call
CheckFunctionForm before calling Call Function.

NOTE: The parameters structure must use standard X OP structure packing, namely, two-byte
packing. If you don't set the structure packing correctly, acrashislikely. See Structure
Alignment on page 279.

Parameter type values are discussed in detail in the comments for the GetFunctionlnfo function in
XOPSupport.c. Here is the basic correspondence between function parameter types and the
respective structure field:

if (parameterType == NT_ FP64)
structure field is double

if (parameterType == (NT FP64 | NT CMPLX))
structure field is double[2]

if (parameterType == HSTRING TYPE)
structure field is Handle

if (WAVE_TYPE bit is set)
structure field is waveHndl

if (FV_FUNC_TYPE bit is set)
structure field is long

NOTE: For pass-by-value strings parameters, ownership of a handle stored in the parameter
structure is passed to the function when you call CallFunction. The function will dispose the

471

Chapter 13 — XOPSupport Routines - Procedures

472

handle and CallFunction will set the field to NULL. Y ou must not dispose it or otherwise
reference it after calling CallFunction.

NOTE: For pass-by-reference string parameters, the handle stored in the parameter structure field
may be reused or disposed by the called function. When CallFunction returns, you own the
handle which may be the same handle you passed or a different handle. Y ou own this handle and
you must dispose it when you no longer need it. If the field is NULL, which could occur in the
event of an error, you must not dispose of it or otherwise accessiit.

CallFunction stores the function result at the location indicated by resultPtr. Hereis the
correspondence between the function result type and the variable pointed to by resultPtr:

NT FP64 double
NT FP64 | NT CMPLX double[2]
HSTRING TYPE Handle

NOTE: A function that returns a string can return NULL instead of avalid handle. Y ou must test
the returned value to make sureit isnot NULL before using it. If the returned handle is not
NULL, you own it and you must dispose it when you no longer need it.

CallFunction returns 0 as the function result if the function executed. If the function could not be
executed, it returns a non-zero error code.

Added for Igor Pro 5.00. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

Chapter 13 — XOPSupport Routines - Windows-Specific

Windows-Specific Routines

These routines are available and applicable to X OPs running under the Windows OS only.

HMODULE
XOPModule (void)

This routine is supported on Windows only.
XOPModule returns the XOP's module handle.

Y ou will need thisHMODULE if your XOP needs to get resources from its own executable file
using the Win32 FindResource and L oadResource routines. It is also needed for other Win32 API
routines.

HMODULE
IgorModule (void)

This routine is supported on Windows only.
IgorModule returns Igor's module handle.

There is probably no reason for an XOP to call this routine.

HWND
IgorClientHWND (void)

This routine is supported on Windows only.
IgorClientHWND returns Igor's MDI client window HWND.

Some Win32 API calls require that you pass an HWND to identify the owner of a new window or
dialog. An exampleis MessageBox. Y ou must pass IgorClientHWND() for this purpose.

int
WMGetLastError (void)
This routine is supported on Windows only.

WM GetL astError does the same as the Win32 GetL astError routine except for three things. First,
it translates Windows OS error codes into codes that mean something to Igor. Second, it aways
returns a non-zero result whereas GetL astError can sometimes return 0. Third, it calls

SetlL astError(0).

For a detailed explanation, see Handling Windows OS Error Codes on page 128.

473

Chapter 13 — XOPSupport Routines - Windows-Specific

int
WindowsErrorToIgorError (int winErr)
int winErr; // Windows 0OS error code

This routine is supported on Windows only.

WindowsErrorTolgorError takes a Windows OS error code and returns an error code that means
something to Igor.

For a detailed explanation, see Handling Windows OS Error Codes on page 128.

474

Chapter 13 — XOPSupport Routines - Windows-Specific

int

SendWinMessageToIgor (hwnd, iMsg, wParam, lParam, beforeOrAfter)

HWND hwnd; // Your XOP's HWND

UINT iMsg; // The message your window procedure received
WPARAM wParam; // The wParam that came with the message

LPARAM lParam; // The lParam that came with the message

int beforeOrAfter; // 0 if you before you service message, 1 if after

If your XOP adds awindow to Igor, you must call SendWinMessageTolgor twice from your
window procedure - once before you process the message and once after. Y ou must do this for
every message that you receive.

Calling SendWinMessageTolgor allows Igor to do certain housekeeping operations that are
needed so that your window will fit cleanly into the Igor environment.

If the function result from SendWinMessageTolgor is non-zero, you should skip processing of the
message. For example, Igor returns non-zero for click and key-related messages while an Igor
procedure is running.

To help you understand why thisis necessary, hereis a description of what Igor does with these
messages as of thiswriting.

NOTE: Future versions of Igor may behave differently, so you must send every message to Igor,
once before you process it and once after.

M essage Action

WM_CREATE Before: Allocates memory used so that the X OP window
appears in the Windows menu and can respond to user actions
like Ctrl-E (send behind) and Ctrl-W (close).

After: Nothing.

WM_DESTROY Before: Nothing.
After: Deallocates memory allocated by WM_CREATE.

WM_MDIACTIVATE Before: Compiles procedure windows if necessary.

(when XOP window is After: Sets Igor menu bar (e.g., removes "Graph" menu from
being activated only) Igor menu bar).

See Adding a Simple Window on Windows on page 251 for background information.

475

Chapter 13 — XOPSupport Routines - Miscellaneous

476

Miscellaneous Routines

These routines don't fit in any particular category.

int

XOPCommand (cmdPtr)

char* cmdPtr; // C string containing an Igor command
Submits a command to Igor for execution.

The function result is 0 if OK or an error code.

Use thisto access Igor features for which there is no direct XOP interface.

cmdPtr isa C string (null byte at the end). The string must consist of one line of text not longer
than MAXCMDLEN and with no carriage return characters.

A side-effect of XOPCommand isthat it causes Igor to do an update. See DoUpdate below for a
definition of “update’.

XOPCommand displays the command being executed in Igor’s command line. For most cases,
use X OPSilentCommand, which does not display the command, instead of XOPCommand.

Liberal names of waves and data folders must be quoted before using them in the Igor command
line. Use PossiblyQuoteName when preparing the command to be executed so that your XOP
works with liberal names.

NOTE: If your XOP adds awindow to Igor or if the command that you are executing directly or
indirectly calls your XOP again, this callback will cause recursion. This can cause your
XOP to crash if you do not handle it properly. See Handling Recur sion on page 137 for

details.
int
XOPCommand2 (cmdPtr, silent, sendToHistory)
char* cmdPtr; // C string containing an Igor command
int silent; // True to not show cmd in command line
int sendToHistory; // True to send cmd to history area

Submits a command to Igor for execution.
The function result is0 if OK or an error code.
Use thisto access Igor features for which there is no direct X OP interface.

cmdPtr isa C string (null byte at the end). The string must consist of one line of text not longer
than MAXCMDLEN and with no carriage return characters.

If silent is non-zero, the command is displayed in Igor’s command line while it executes.

Chapter 13 — XOPSupport Routines - Miscellaneous

If sentToHistory is non-zero and the command generates no error, the command is sent to the
history area after execution.

A side-effect of XOPCommand isthat it causes Igor to do an update. See DoUpdate below for a
definition of “update”.

XOPCommand displays the command being executed in Igor’s command line. For most cases,
use X OPSilentCommand, which does not display the command, instead of XOPCommand.

Liberal names of waves and data folders must be quoted before using them in the Igor command
line. Use PossiblyQuoteName when preparing the command to be executed so that your XOP
works with liberal names.

NOTE: If your XOP adds awindow to Igor or if the command that you are executing directly or
indirectly callsyour XOP again, this callback will cause recursion. This can cause your
XOP to crash if you do not handle it properly. See Handling Recur sion on page 137 for
details.

int
XOPSilentCommand (cmdPtr)
char* cmdPtr; // C string containing an Igor command

Submits a command to Igor for execution.
The function result isO if OK or an error code.
Use thisto access Igor features for which there is no direct XOP interface.

A side-effect of XOPSilentCommand isthat it causes Igor to do an update. See DoUpdate below
for adefinition of “update”.

Thisisjust like XOPCommand except that it does not flash the command being executed in
Igor’s command line. Use this if your XOP needs to execute an Igor command at atime when the
user does not expect to see things flashing, such as during IDLE processing.

Liberal names of waves and data folders must be quoted before using them in the Igor command
line. Use PossiblyQuoteName when preparing the command to be executed so that your XOP
works with liberal names.

NOTE: If your XOP adds awindow to Igor or if the command that you are executing directly or
indirectly calls your XOP again, this callback will cause recursion. This can cause your
XOP to crash if you do not handle it properly. See Handling Recur sion on page 137 for
details.

477

478

Chapter 13 — XOPSupport Routines - Miscellaneous

void
DoUpdate (void)

Causes Igor to do an immediate update.

An update consists of :

* Redrawing any windows that have been uncovered.

* Re-evauating any dependency formulas (e.g., wave0 := KO when KO changes).
» Redrawing windows displaying objects (e.g., waves) that have changed.

Igor does updates automatically in its outer loop. Y ou should call DoUpdate only if you want Igor
to do an update before your XOP returnsto Igor.

NOTE: If your XOP adds awindow to Igor or if the update of an Igor window indirectly calls
your XOP again, this callback will cause recursion. This can cause your XOP to crash if
you do not handle it properly. See Handling Recursion on page 137 for details.

void
PauseUpdate (savePtr)
long* savePtr; // Place to save current state of PauseUpdate

Tells Igor not to update graphs and tables until your XOP calls ResumeUpdate.
Make sure to balance this with a ResumeUpdate call.

void
ResumeUpdate (savePtr)
long* savePtr; // Previous state from PauseUpdate call

Undoes effect of previous PauseUpdate.
Make sure thisis balanced with a previous PauseUpdate call.

void
XOPNotice (noticePtr)
char* noticePtr; // Message for Igor's history area

Displays the C string pointed to by noticePtr in Igor’s history.
Thisis used mostly for debugging or to display the results of an operation.

NOTE: When Igor passes amessage to you, you must get the message, using GetX OPM essage,
and get all of the arguments, using GetX OPItem, before doing any callbacks, including
XOPNotice. The reason for thisisthat the act of doing the callback overwritesthe
message and arguments that Igor is passing to you.

Chapter 13 — XOPSupport Routines - Miscellaneous

void

XOPResNotice(strListID, index)

int strListID; // Resource ID to get string from
int index; // String number in that resource

Gets a string from an STR# resource in the XOP sresource fork and displaysit in Igor’s history.
The resource must be of type 'STR#. The resource ID should be between 1100 and 1199.

These resource I Ds are reserved for XOPs.

strListID isthe resource ID of the STR# containing the string.

index is the number of the string in the STR# resource.

int

WavelList (listHandle, match, sep, options)

Handle listHandle; // Handle to contain list of waves

char* match; // "*" for all waves or match pattern
char* sep; // Separator character, normally ";"
char* options; // Options for further selection of wave

Puts alist of waves from the current data folder that match the parametersinto listHandle.

The function result is 0 if OK or an error code if the parameters were not legal or another problem
(such as out of memory) occurred.

Oninput, listHandle is a handle to 0 bytes which you have allocated, typically with NewHandle.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handle and a C String on page 321. If you pass the handle
back to Igor, you must remove the null terminator and unlock the handle.

The meaning of the match, sep and options parameters is the same as for the built-in Igor
WaveL.ist function.

The handle must be allocated and disposed by the calling XOP.

479

Chapter 13 — XOPSupport Routines - Miscellaneous

480

int

WinList (listHandle, match, sep, options)

Handle listHandle; // Handle to contain list of windows

char* match; // "*" for all windows or match pattern
char* sep; // Separator character, normally ";"

char* options; // Options for further selection of windows

Puts alist of windows that match the parametersinto listHandle.

The function result is0 if OK or an error code if the parameters were not legal or another problem
(such as out of memory) occurred.

The meaning of the match parameter is the same as for the built-in Igor WinList function.

nn

If optionsis™" then all windows are selected.

If optionsis "WIN:" then just the target window is selected.

If optionsis"WIN:typeMask" then windows of the specified types are selected.

The window type masks are defined in IgorX OP.h.

Oninput, listHandle is a handle to O bytes which you have allocated, typically with NewHandle.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handle and a C String on page 321. If you pass the handle
back to Igor, you must remove the null terminator and unlock the handle.

The handle must be allocated and disposed by the calling XOP.

int

PathList (listHandle, match, sep, options)

Handle listHandle; // Handle to contain list of paths
char* match; // "*" for all paths or match pattern
char* sep; // Separator character, normally ";"
char* options; // Must be "n"

Putsalist of symbolic paths that match the parameters into listHandle.

The function result is0 if OK or an error code if the parameters were not legal or another problem
(such as out of memory) occurred.

The meaning of the match parameter is the same as for the built-in Igor PathList function.

options must be "".

Oninput, listHandle is a handle to O bytes which you have allocated, typically with NewHandle.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and

Chapter 13 — XOPSupport Routines - Miscellaneous

null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handle and a C String on page 321. If you pass the handle
back to Igor, you must remove the null terminator and unlock the handle.

The handle must be allocated and disposed by the calling XOP.

int

GetPathInfo2 (pathName, fullDirPath)

const char* pathName; // Input
char* fullDirPath[MAX PATH LEN+1]; // Output

pathName is the name of an Igor symbolic path.

Returns via fullDirPath the full native path to the directory referenced by pathName. The returned
path includes a trailing colon on Macintosh and a trailing backslash on Windows.

The function result isO if OK or an error code if the pathName is not the name of an existing Igor
symbolic path.

int

VariablelList (listHandle, match, sep, varTypeCode)

Handle listHandle; // Receives list of variable names

char* match; // "*" for all variables or match pattern
char* sep; // Separator character, normally ";"
char* varTypeCode; // Select which variable types to list

Putsalist of Igor global numeric variable names from the current data folder that match the
parameters into listHandle.

The function result is 0 if OK or an error code if the parameters were not legal or another problem
(such as out of memory) occurred.

match and sep are as for the WaveL ist callback.

varTypeCode is some combination of NT_FP32, NT_FP64 and NT_CMPLX. Use (NT_FP32 |
NT_FP64 | NT_CMPLX) to get all variables. As of Igor Pro 3.0, al numeric global variables are
double precision.

Oninput, listHandle is a handle to 0 bytes which you have allocated, typically with NewHandle.
VariableList fills the handle with text.s

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handle and a C String on page 321. If you pass the handle
back to Igor, you must remove the null terminator and unlock the handle.

The handle must be allocated and disposed by the calling XOP.

481

Chapter 13 — XOPSupport Routines - Miscellaneous

482

int

StringList(listHandle, match, sep)

Handle listHandle; // Receives list of string variable names
char* match; // "*" for all strings or match pattern
char* sep; // Separator character, normally ";"

Putsalist of Igor global string variable names from the current data folder that match the
parameters into listHandle.

The function result is 0 if OK or an error code if the parameters were not legal or another problem
(such as out of memory) occurred.

match and sep are as for the WaveL ist callback.

Oninput, listHandle is a handle to 0 bytes which you have allocated, typically with NewHandle.
StringList fills the handle with text.

Note that the text in the handle is not null terminated. Use GetHandleSize to find the number of
bytesin the handle. To use C string functions on this text you need to copy it to alocal buffer and
null-terminate it or add a null terminator to the handle and lock the handle. See Under stand the
Difference Between a String in a Handle and a C String on page 321. If you pass the handle
back to Igor, you must remove the null terminator and unlock the handle.

The handle must be allocated and disposed by the calling XOP.

int

CheckAbort (timeoutTicks)

long timeoutTicks; // Ticks at which timeout occurs

Use thisto check if it’stime to stop an operation or if user is pressing cmd-dot (Macintosh) or
Ctrl-Break (Windows) to abort it.

Returns-1if user is now pressing cmd-dot.

Returns 1 if timeoutTicks is not zero and TickCount > timeoutTicks. TickCount is the Macintosh
tick counter. It increments approximately 60 times per second. The TickCount function is
emulated by Igor when running on Windows.

Returns 0 otherwise.

CheckAbort this does a check only every .1 second no matter how often you call it.

Chapter 13 — XOPSupport Routines - Miscellaneous

int
DoCHIO (CHIOPtr)
CHIORecPtr CHIOPtr; // Pointer to struct describing character I/O

Thisisused to do 1/0 with character-oriented devices.

Y ou supply the address of your routine for reading characters, writing characters, checking how
many characters are available for reading and returning unread characters to your input buffer.
DoCHI O then does al the parameter parsing, reading or writing, conversion to/from ASCII,
storing in variables or waves and all of the other details necessary to implement character-
oriented read/write operations.

The CHIORec structure is documented in the IgorXOP.h file.

NOTE: New XOPs should not use DoCHIO. It was used in a complicated scheme that the old
VDT and NIGPIB XOPs used to parse input. The idea was that the parsing would be done
through a callback to Igor so that it would not need to be replicated in each X OP. However, this
technique is no longer recommended because it makes program flow incomprehensible. Instead
the new VDT2 and NIGPIB2 XOPs do their own parsing.

For examples using DoCHII0O, see the VDTRead, VDTReadWave, VDTWrite, and
VDTWriteWave routines in the sample file VDTOperations.c in XOP Toolkit 3.1.

void

IgorError (title, errCode)

char* title; // Short title for error alert
int errCode; // Error code

Displays an error aert appropriate for the specified error code.
Titleisashort string that identifies what generated the error.

errCode may be an Igor error code (defined in IgorX OP.h), an XOP-defined error code, or, when
running on Macintosh, a Mac OS error code. To display a message for a Windows OS error,
convert the code to an Igor code by calling WindowsErrorTolgorError.

Use this routine when an error occursin an XOP but not during the execution of a command line
operation, function or menu item routine. See XOP Errors on page 127 for details.

int

GetIgorErrorMessage (errCode, errorMessage)

int errCode; // Error code

char errorMessage[256] ; // Output string goes here

Returns via errorM essage the message corresponding to the specified error code.

errCode may be an Igor error code (defined in IgorX OP.h), an X OP-defined error code, or, when
running on Macintosh, a Mac OS error code. To obtain a message for a Windows OS error,

483

Chapter 13 — XOPSupport Routines - Miscellaneous

484

convert the code to an Igor code by calling WindowsErrorTolgorError before caling
GetlgorErrorMessage.

Do not pass 0 for errCode. Thereis no error message corresponding to 0.
errorM essage must be large enough to hold 255 bytes plus atrailing null.

The function result is 0 if OK, or anon-zero error code if the errCode parameter isinvalid. If
GetlgorErrorMessage fails to get a message, it sets * errorMessage to 0.

Thisroutine is of use when you want to display an error message in your own window rather than
inadialog. See XOP Errorson page 127 for details.

int
SpinProcess (void)

Spins the beachball cursor and, on Macintosh, gives other programs a chance to do background
processing.

Igor may be moved from the foreground to the background or vice versa when SpinProcessis
called.

Returns non-zero if the user pressed cmd-dot (Macintosh) or Ctrl-Break (Windows) recently or
zero otherwise.

To spin the beachball cursor without alowing background processing on Macintosh, call
SpinCursor.

NOTE: If your XOP adds awindow to Igor or if the update of an Igor window indirectly calls
your XOP again, this callback will cause recursion. This can cause your XOP to crash if
you do not handle it properly. See Handling Recursion on page 137 for details.

Chapter 13 — XOPSupport Routines - Miscellaneous

void

PutCmdLine (cmd, mode)
char* cmd;

int mode;

Thisisalower level call than the FinishDialogCmd call which should be used in most cases.
Puts the text in the C string cmd into Igor’s command line using the specified mode.

Liberal names of waves and data folders must be quoted before using them in the Igor command
line. Use PossiblyQuoteName when preparing the command to be executed so that your XOP
works with liberal names.

Modes are:

INSERTCMD Inserts text at current insertion point.
FIRSTCMD Inserts text in front of command buffer.
FIRSTCMDCRHIT Inserts text in front of command buffer, set crHit.
REPLACEFIRSTCMD Replacesfirst line of command buffer with text.

REPLACEALLCMDSCRHIT Replacesall lines and set crHit.

REPLACEALLCMDS Replaces dl lines of command buffer with text.

The intended use for PutCmdLineis to put acommand generated by an XOP dialog into Igor's
command line. For this, use the FIRSTCMD mode to just put the command in the command line
or the FIRSTCMDCRHIT mode to put the command in the command line and start execution of
the command buffer. crHit is avariable within Igor itself which enables execution of commands
in the command buffer. Execution of commands occursin Igor’sidle loop.

If you just want to submit a command to Igor for immediate execution, use XOPCommand or
XOPSilentCommand instead.

485

Chapter 13 — XOPSupport Routines - Miscellaneous

int

IgorVersion (void)

Returns 100 times the version of Igor that is running.

For example, if the version of Igor is5.01, IgorVersion returns 501.

Y ou can check the Igor version during initialization of your XOP. If the version is not recent
enough to run your XOP, return an error (using SetX OPResult) indicating that your XOP needs a
later version of Igor.

NOTE: You should usetheigorVersion global rather than IgorVersion. Calling IgorVersion
will do no harm but it is slow.

int

XOPDisplayHelpTopic(title, topicStr, flags)

const char* title; // Title for help window

const char* topicStr; // The help topic to be displayed
long flags;

Displays help from an Igor help file for the specified topic. See Igor Pro Help File on page 292
for background information.

Thetitle parameter is used only for modal help and supplies the title for amodal dialog
containing the help. Modal help is described below.

topicStr is a help topic string that matches a help topic or subtopic in an Igor help file. Igor first
searches open help filesfor the topic. If it is not found, Igor then searches all Igor help filesin the
folder containing the XOP file and subfolders. If it is still not found Igor then searches all Igor
help filesin the Igor Pro folder and subfolders.

The help file must be compiled in order for Igor to find the topic. Each time you open afileasa
help file, Igor checksto seeif it is compiled and if not asks if you want to compileit.

topicStr may have one of the following formats:

Format Example
<topic name> "GBLoadWave X OP"
<subtopic name> "The Load General Binary Dialog"

<topic name>[<subtopic name>] "GBLoadWave XOP[The Load General Binary Dialog]"

486

If the topic that you want to display is a subtopic, you should use the last form since it minimizes
the chance that Igor will find another help file with the same subtopic name. Also, you must

Chapter 13 — XOPSupport Routines - Miscellaneous

choose descriptive topic and subtopic names to minimize the chance of a conflict between two
help files.

Note that once you reference a help topic or subtopic from your executable code, you must be
careful to avoid changing the name of the topic or subtopic.

The flags parameter is interpreted bitwise as follows:

Bit0 If cleared, Igor displays non-modal help. If set, Igor displays modal help.

Bit 1 If cleared, during modal help Igor displays the entire help file (if it is not
too big) in the modal help dialog, with the specified topic initially in view.
If set, during modal help Igor displaysjust the specified topic.

Bit 2 If cleared, if the topic can not be found Igor displays an error dialog. If set,
if the topic can not be found Igor does not display an error dialog.

All other bits Reserved. Y ou must pass zero for these bits.

You must set bit 0 if you call XOPDisplayHelpTopic from amodal dialog. This causes Igor do
display adialog containing help on top of your dialog. If you fail to set bit zero when calling
XOPDisplayHelpTopic from amoda dialog, Igor may behave erratically. Unfortunately, linksin
help files don't work during modal help.

If you are calling X OPDisplayHelpTopic in anon-modal situation, it is appropriate to clear bit
zero, but not required. If you clear bit zero, Igor displays a normal Igor help file. If you set bit
zero, lgor displays amodal help dialog.

Y ou must set all other bitsto zero.

Function result is 0 if OK or a non-zero code if the topic can not be found or some other error
OCCUrs.

487

Chapter 13 — XOPSupport Routines - Miscellaneous

488

int

XOPSetContextualHelpMessage (theWindow, msg, r)

XOP_WINDOW REF theWindow; // WindowRef on Mac, HWND on Windows
const char* msg; // The tip.

const Rect* r; // Hot rectangle.

Displays a message in the Igor Tips help window on Macintosh or in the status bar on Windows.
Call this when your window is active and the user moves the cursor over an icon or other area of
the window about which you have something to say.

theWindow is your WindowRef on Macintosh or your HWND on Windows. Thisrefersto the
window containing the control or icon for which you are providing help.

message is a C string containing the message to display.

r isapointer to a Macintosh rectangle, even on Windows, that indicates the area of the window
that the icon occupies. When the user moves the cursor out of this rectangle, Igor will remove the
message. On Macintosh, this rectangle isin the local coordinates of the window containing the
control or icon. On Windows, it isin client coordinates of the window containing the control or
icon. On Windows, use WinRectToMacRect to trand ate the Windows RECT into a Macintosh
Rect.

Function result is 0 if OK or IGOR_OBSOLETE.
The WindowX OP1 sample XOP illustrates the use of this function.

Added for Igor Pro 4.05 Carbon. If you call thiswith an earlier version of Igor, it will return
IGOR_OBSOLETE and do nothing.

int
IsMacOSX (void)

Returns the truth that we are running on Mac OS X.
Thisroutineis available on Macintosh only.

Chapter 13 — XOPSupport Routines - Miscellaneous

int

WinInfo (index, typeMask, name, winPtr)

int index; // Index number of window

int typeMask; // Code for type of window of interest
char name [MAX OBJ NAME+1]; // C string to receive name
XOP_WINDOW REF* windowRefPtr; // Pointer to WindowPtr or HWND.

Returns information about an Igor target window (graph, table, layout, notebook or control
panel).

index and typeMask are inputs.

name and windowRefPtr and the function result are outputs.

On Macintosh, windowRefPtr points to a WindowPtr. On Windows, it points to an HWND.
index is an index starting from O for the top window, 1 for the next window and so on.

typeMask is a combination of GRAF_MASK , SS MASK, PL_MASK, MW_MASK and
PANEL_MASK for graphs, tables, page layouts, notebooks and control panels. Window types
and type masks are defined in 1gorX OP.h.

Winlnfo stores the name of the specified window in name and stores the XOP_WINDOW_REF
for the specified window in *windowRefPtr.

Winlnfo returns the Igor window type of the specified window or 0 if no such window exists. If O
is returned then the name and * windowRefPtr are undefined.

int
SaveXOPPrefsHandle (prefsHandle)
Handle prefsHandle; // Handle containing prefs data.

Saves the handle in Igor's preferencesfile. Y ou can retrieve the handle using GetX OPPrefs-
Handle.

Igor makes a copy of the datain the handle, so the handleis still yours after you call this. Keep or
dispose of it as you wish.

If you pass NULL for the prefsHandle parameter, Igor removes any existing XOP preferences
from the Igor preferencesfile.

Igor uses the name of your XOP's file to distinguish your preferences from the preferences of
other XOPs.

Each time you call this routine, the Igor preferencesfile is opened and closed. Therefore, it is best
to call each of it only once. One way to do thisisto call GetX OPPrefsHandle when your X OPs
starts and SaveX OPPrefsHandle when you receive the CLEANUP message.

The function result is 0 if OK or a non-zero error code.

489

Chapter 13 — XOPSupport Routines - Miscellaneous

490

As of thiswriting, XOP preference handles are stored in the Igor preferences file but this may
change in the future.

int
GetXOPPrefsHandle (Handle* prefsHandlePtr)
Handle* prefsHandlePtr;

Retrieves your XOP's preference handle from the Igor preferencesfile, if you have previously
stored it there using SaveX OPPrefsHandle. In this case, on return, * prefsHandlePtr will be your
preferences handle and the function result will be 0. This handleis alocated by Igor but belongs
to you to keep or dispose as you wish.

If the Igor preferences file does not contain your preferences, on return, * prefsHandlePtr will be
NULL and the function result will be 0.

Igor uses the name of your XOP's file to distinguish your preferences from the preferences of
other XOPs.

Each time you call this routine, the Igor preferencesfile is opened and closed. Therefore, it is best
to call each of it only once. One way to do thisisto call GetX OPPrefsHandle when your X OPs
starts and SaveX OPPrefsHandle when you receive the CLEANUP message.

The function result isO if OK or anon-zero error code.

If theresult is zero and * prefHandlePtr is not NULL then * prefsHandlePtr contains a handle to
your preferences.

If the result is zero and * prefHandlePtr is NULL then there was no preferences data for your
XOP. Y ou should use default settings.

If the result is non-zero then an error occurred while trying to access preferences. * prefHandlePtr
will be NULL and you should use default settings.

As of thiswriting, XOP preference handles are stored in the Igor preferences file but this may
change in the future.

int
GetPrefsState (prefsStatePtr)
long* prefsStatePtr; // Receives preferences state flag.

Returns via bit O of prefsStatePtr the truth that preferences are on. Other bits are reserved for
future use.

See the Igor Pro manual for information about the preferences on/off state.

The function result isO if OK or an error code.

Chapter 13 — XOPSupport Routines - Programming Utilities

Programming Utilities

int

MemClear (void *p, long numBytes)

void* p; // Pointer to memory to be cleared.
long numBytes; // Number of bytes to be cleared.

Sets the specified number of bytes at the memory location pointed to by p to zero.

int

GetCStringFromHandle (h, str, maxChars)

Handle h; // Handle containing text

char* str; // Output C string goes here

int maxChars; // Max number of characters before null

h isahandle containing a string.

strisa C string (null-terminated character array).

maxChars is the maximum number of bytes that str can hold, excluding the null terminator byte.
GetCstringFromHandle transfers the characters from h to str and null-terminates str.

If hisNULL, GetCStringFromHandle returns USING_NULL_STRVAR. Thisistypicaly a
programmer error.

If the charactersin h will not fit in str, GetCStringFromHandle returns STR_TOO_LONG.
If the charactersfit, it returns O.

For adiscussion of C strings versus text handles, see Under stand the Difference Between a
String in aHandleand a C String on page 321.

int

PutCStringInHandle (str, h)

const char* str; // Input C string
Handle h; // Handle to hold text

strisa C string (null-terminated character array).
hisahandlein which the C string dataiis to be stored.

PutCStringlnHandle transfers the characters from str to h. Note that the trailing null from the C
string is not stored in the handle.

If hisNULL, it returns USING_NULL_STRVAR. Thisistypically a programmer error.

If an out-of-memory occurs when resizing the handle, it returns NOMEM. If the operation
succeeds, it returns O.

For adiscussion of C strings versus text handles, see Under stand the Differ ence Between a
Stringin aHandleand a C String on page 321.

491

Chapter 13 — XOPSupport Routines - Programming Utilities

492

int

CmpStr (char *strl, char *str2)

char* stril; // C string
char* str2; // C string

Does case-insensitive comparison.

Returns O if the strings are the same except for case. Returns -1 if strl is alphabetically before str2
or 1if strl isalphabetically after str2.

int

strchr2 (const char* str, int ch)

const char* str; // C string to be searched

int ch; // Single-byte character to search for

strchr2 islike the standard C strchr function except that it is Asian-language-aware and assumes
that the system default character encoding governs the path.

It returns a pointer to the first occurrence of ch in the null-terminated string str or NULL if there
is no such occurrence. ch is a single-byte character.

On a system that uses an Asian script system as the default script, strchr2 knows about two-byte
characters. For example, if you are searching for abacksash in afull path and if the path contains
Asian characters, and if the second byte of an Asian character has the same code as the backslash
character, strchr will mistakenly find this second byte while strchr2 will not.

On a system that does not use an Asian script system as the default script, strchr2 isjust like
strchr.

int

strrchr2 (const char* str, int ch)

const char* str; // C string to be searched

int ch; // Single-byte character to search for

strrchr2 islike the standard C strrchr function except that it is Asian-language-aware and assumes
that the system default character encoding governs the path.

Returns a pointer to the last occurrence of ch in the null-terminated string str or NULL if thereis
no such occurrence. ch is asingle-byte character.

On a system that uses an Asian script system as the default script, strrchr2 knows about two-byte
characters. For example, if you are searching for abackdash in afull path and if the path contains
Asian characters, and if the second byte of an Asian character has the same code as the backslash
character, strrchr will mistakenly find this second byte while strrchr2 will not.

On a system that does not use an Asian script system as the default script, strrchr2 isjust like
strrchr.

Chapter 13 — XOPSupport Routines - Programming Utilities

int
IsINF32 (floatPtr)
float* floatPtr; // The number to test

Returns 1 if the number pointed to by floatPtr is +infinity or —infinity, O otherwise.
int

IsINF64 (doublePtr)

double* doublePtr; // The number to test

Returns 1 if the number pointed to by doublePtr is +infinity or —infinity, O otherwise.
int

IsNaN32 (floatPtr)

float* floatPtr; // The number to test

Returns 1 if the number pointed to by floatPtr isa NaN (hot-a-number) or 0 otherwise.
int

IsNaN64 (doublePtr)

double* doublePtr; // The number to test

Returns 1 if the number pointed to by doublePtr isaNaN (not-a-number) or O otherwise.
int

SetNaN32 (floatPtr)

float* floatPtr;

Sets the float pointed to by the parameter to NaN (not-a-number).

int

SetNaN64 (doublePtr)

double* doublePtr;

Sets the double pointed to by the parameter to NaN (not-a-number).

493

Chapter 13 — XOPSupport Routines - Programming Utilities

494

int

DateToIgorDateInSeconds (numValues, year, month, dayOfMonth, secs)
int numValues; // Number of dates to convert

short* year; // e.g., 2004

short* month; // l=January, 2=February,

short* dayOfMonth;

double* secs; // Output in Igor date format

Converts dates into Igor date format (seconds since 1/1/1904).
numValuesis the number of dates to convert.

year, month and dayOfMonth and secs are arrays allocated by the calling routine. The size of
each array is specified by numValues.

On input, year, month and dayOfMonth hold the input values. On return, secs holds the output
values.

The function result is zero or an error code.
This routine requires Igor Pro 5.00 or later. Earlier versions will return IGOR_OBSOLETE.

int

IgorDateInSecondsToDate (numValues, secs, dates)

int numValues; // Number of dates to convert
double* secs; // Input in Igor date format
short* dates; // Output goes here

Converts dates in Igor date format (seconds since 1/1/1904) into date records.
numValuesis the number of Igor dates to convert.
secsisan array of datesin Igor date format. Its size is specified by numValues.

datesis an array of shorts. It must hold 7* numValues shorts. For each input value, 7 values are
written to the dates array, in the following order:

year, month, dayOfMonth, hour, minute, second, dayOfWeek
The function result is zero or an error code.

For example:

double secs[2];
short dates[2*7];

int err;

secs[0] = 0; // Represents January 1, 1904, midnight.
secs[1l] = 24*60%*60; // Represents January 2, 1904, midnight.
err = IgorDateInSecondsToDate (2, secs, dates);

Thisroutine requires Igor Pro 5 or later. Earlier versions will return IGOR_OBSOLETE.

Chapter 13 — XOPSupport Routines - Programming Utilities

int
MoveLockHandle (theHandle)
void* theHandle; // The handle to be moved and locked

Moves the handle to the top of the heap and locks it. Use this before dereferencing the handle to
make sure the block of memory that the handle refersto is not relocated.

The function result is the state of the handle before it was locked. Y ou can use thisto later restore
the handle to its previous state, using HSetState.

NOTE: Ingenera, you should not lock handlesif you can avoid it. Locking a handle fragments
the heap or takes alot of time (if you also move it high as you should) and makes it
necessary for you to keep track of the state of the handle. However, if you arein doubt,
it is better to lock the handle than to risk a crash. See Dangling Pointer / Heap
Scramble Problems on page 312 for details.

void
XOPBeep (void)

Emits a beep.

void

XOPOKAlert (title, message)

const char* title; // Dialog title.

const char* message; // Message to be displayed.

Displays an alert (also known as "message box") and waits for the user to click OK.

int

XOPOKCancelAlert (title, message)

const char* title; // Dialog title.

const char* message; // Message to be displayed.

Displays an alert (also known as "message box") and waits for the user to click OK or Cancel.
Returns 1 for OK, -1 for cancel.

int

XOPYesNoAlert(title, message)

const char* title; // Dialog title.

const char* message; // Message to be displayed.

Displays an aert (also known as "message box") and waits for the user to click Yes or No.
Returns 1 for yes, 2 for no.

495

Chapter 13 — XOPSupport Routines - Programming Utilities

496

int

XOPYesNoCancelAlert(title, message)

const char* title; // Dialog title.

const char* message; // Message to be displayed.

Displays an alert (also known as "message box") and waits for the user to click Yes or No or
Cancel.

Returns 1 for yes, 2 for no, -1 for cancel.

void

MacRectToWinRect (mr, wr)

const Rect* mr; // Macintosh rectangle
RECT* wr; // Windows rectangle

Igor sometimes passes a M acintosh rectangle to your X OP as a message argument. Use
MacRectToWinRect when you receive a Macintosh rectangle but you need a Windows rectangle.

void

WinRectToMacRect (wr, mr)

const RECT* wr; // Windows rectangle
Rect* mr; // Macintosh rectangle

Some X OPSupport routines take a Macintosh rectangle as a parameter. Use WinRectToMacRect
when an X OPSupport routine requires a Macintosh rectangle but you have a Windows rectangle.

Chapter 13 — XOPSupport Routines - Macintosh Emulation

Macintosh Emulation Routines

These Mac OS API routines are emulated by Igor when running on Windows so that X OPs can
share memory and menus with Igor and to make it easier to write a cross-platform X OP with a
single set of source code. In many cases, the emulation is not complete but rather just sufficient
for these purposes. This section describes the behavior of the routines as they are emulated by
Igor on Windows.

Emulated Macintosh Memory Management Routines

When dealing with memory objects that are shared between Igor and your XOP, you must use
Macintosh memory management routines, described in this section, even when you are running
on Windows. When dealing with your own private data, you can use Macintosh routines, standard
C memory management routines, or Windows memory management routines. Using the

M acintosh routines makes it easier to write cross-platform X OPs.

When running on Macintosh, these routines are implemented by the Mac OS. When running on
Windows, they are supplied by the IGOR.lib, with which all XOPs are linked.

See Data Sharing on page 139 for an overview.

Ptr
NewPtr (size)
long size;

NewPtr allocates a block of size bytesin the heap and returns a pointer to that block.
In the event of an error, NewPtr returns NULL.

After calling NewPtr, you can call MemError to seeif there was a error during allocation of the
memory. However, it is customary to assume that the error isNOMEM if NewPtr returns NULL.
For example:

Ptr p;
p = NewPtr(100) ;
if (p == NULL)

return NOMEM;

Y ou must call DisposePtr to free the block of memory allocated by NewPtr.

long
GetPtrSize (p)
Ptr p;

p isapointer to a block of memory allocated by NewPtr.
GetPtrSize returns the size in bytes of that block of memory.

497

498

Chapter 13 — XOPSupport Routines - Macintosh Emulation

void

SetPtrSize(p, size)
Ptr p;

long size;

p isapointer to ablock of memory allocated by NewPtr.
SetPtrSize resizes the block to the number of bytes specified by the size parameter.

SetPtrSize can fail. You must call MemError after calling SetPtrSize to verify that the resizing
succeded.

void
DisposePtr (p)
Ptr p;

p isapointer to ablock of memory allocated by NewPtr.

DisposePtr frees the block of memory. After calling DisposePtr, you must not access the memory.

Handle
NewHandle (size)
long size;

NewHandle alocates a block of size bytesin the heap and returns a reference to that block.
In the event of an error, NewHandle returns NULL.

After calling NewHandle, you can call MemError to seeif there was a error during allocation of
the memory. However, it is customary to assume that the error is NOMEM if NewHandle returns
NULL. For example:

Handle h;
h = NewHandle (100) ;
if (h == NULL)

return NOMEM;
Y ou must call DisposeHandle to free the block of memory alocated by NewHandle
int
HandToHand (destHandlePtr)
Handle* destHandlePtr;

HandToHand creates a new block of memory that contains the same data as an existing block of
memory.

It returns O if the allocation succeded or an error code.

In this example, we assume that hl is an existing handle to a block of memory.

Chapter 13 — XOPSupport Routines - Macintosh Emulation

Handle h2;
int err;
h2 = hi; // h2 now refers to the same block of memory as hl.
if (err = HandToHand (&h2))

return err;
<Use h2> // h2 now refers to a new block of memory.
DisposeHandle (h2) ;

int

HandAndHand (hl, h2)
Handle hil;

Handle h2;

h1 and h2 are handles returned by NewHandle.

HandAndHand appends the contents of the block of memory referenced by hl to the block of
memory referenced by h2. In the process, it resizes the block referenced by h2.

It returns O if the allocation succeded or an error code.

long
GetHandleSize (h)
Handle h;

h isahandle referencing a block of memory in the heap.

GetHandleSize returns the number of bytesin the block of memory that h references.
void

SetHandleSize (h, size)

Handle h;
long size

h isahandle referencing a block of memory in the heap.
SetHandleSi ze resizes the block of memory that h references to the number of bytes specified by size.

SetHandleSize can fail. Y ou must call MemError after calling SetHandleSize to verify that the
resizing succeded.

void
DisposeHandle (h)
Handle h;

h isahandle referencing a block of memory in the heap.

DisposeHandle frees the block of memory that h references. After calling DisposeHandle, hisno
longer avalid reference.

499

Chapter 13 — XOPSupport Routines - Macintosh Emulation

500

int
HGetState (h)
Handle h;

h isahandle referencing a block of memory in the heap.

HGetState returns the state of the handle. HGetState is used in conjunction with HSetState to save
and restore the locked/unlocked state of a handle. Usually Movel ockHandle is used instead of
HGetState.

void

HSetState (h, state)
Handle h;

int state;

h is a handle referencing a block of memory in the heap.

HSetState sets the state of the handle. HSetState is used in conjunction with HGetState to save
and restore the locked/unlocked state of a handle.

void
HLock (h)
Handle h;

h isahandle referencing a block of memory in the heap.

HL ock changes the state of the handle to locked, so that the block of memory to which the handle
refers will not be rel ocated by the memory manager.

Rather than unconditionally locking and unlocking a block of memory, it isusually better to call
Movel ockHandle to lock the handle and HSetState to restoreit.

void
HUnlock (h)
Handle h;

h isahandle referencing a block of memory in the heap.

HUnlock changes the state of the handle to unlocked, so that the block of memory to which the
handle refers can be rel ocated by the memory manager.

Rather than unconditionally locking and unlocking a block of memory, it isusually better to call
Movel ockHandle to lock the handle and HSetState to restoreit.

Chapter 13 — XOPSupport Routines - Macintosh Emulation

void
MoveHHi (h)
Handle h;

h isahandle referencing a block of memory in the heap.

MoveHHi moves the block of memory referenced by h to the top of the heap. It isused prior to
HL ock to avoid heap fragmentation.

The Movel ockHandl e routine calls MoveHHi and then HLock and is usually used instead of
calling them separately.

int

PtrToHand (srcPtr, destHandlePtr, size)
Ptr srcPtr;

Handle* destHandlePtr;

long size;

PtrToHand allocates a new block of memory in the heap and then copies size bytes from srcPtr to
the new block. It returns a handle referencing the new block via destHandlePtr.

It returns O if the allocation succeded or an error code.
int

PtrAndHand (p, h, size)

Ptr* p;

Handle h;
long size;

h isahandle referencing a block of memory in the heap.

PtrAndHand resizes the block and then appends size bytes of datato the block by copying from
the pointer p.

It returns O if the all ocation succeded or an error code.

int

MemError (void)

MemeError returns the error status from the most recently called memory management routine.

Use MemError after calling a memory management routine, such as SetPtrSize, that does not
directly return an error status.

501

Chapter 13 — XOPSupport Routines - Macintosh Emulation

502

Emulated Menu Management Routines

XOP menu items appear in Igor menus and X OPs can add menus to the Igor menu bar. On
Windows, Igor uses Macintosh emulation to implement menus. Therefore, XOPs must use
Macintosh menu manager routines to manipulate menu items and menus.

See Menu Manager Routines on page 232 for an overview.

short
CountMItems (theMenu)
MenuHandle theMenu;

Returns the number of menu items in the specified menu.

void

DeleteMenulItem(theMenu, itemNumber)
MenuHandle theMenu;

short itemNumber;

Deletes the specified menu item from the menu.

itemNumber is one-based. The first item in the menu is number 1.

Y ou can delete items from your own menus but you must never delete items from Igor's menus.
void

insertmenuitem(menuH, itemString, afterItem)

MenuHandle menuH;

char* itemString;
short afterItem;

Inserts a new item into the menu after the item specified by afterltem.
itemString is the text for the new item.

afterltem is one-based. If you pass 1, the new item will be inserted after the first item in the menu.
If afterltemis greater than the number of any existing item, the new item is appended to the end
of the menu. If afterltem is O, the new item isinserted at the beginning of the menu.

Y ou can insert items into your own menus but you must never insert itemsinto Igor's menus.
void
appendmenu (menuH, itemString)

MenuHandle menuH;
char* itemString;

Adds a new item to the end of the menu.
itemString isthe text for the new item.
Y ou can add items to your own menus but you must never add items to Igor's menus.

Chapter 13 — XOPSupport Routines - Macintosh Emulation

void

getmenuitemtext (theMenu, itemNumber, itemString)
MenuHandle theMenu;

short itemNumber;

char* itemString;

Retrieves the text for the specified item.

itemNumber is one-based. Thefirst item in the menu is number 1.
The item text isreturned as a C string viaitemString.

void

setmenuitemtext (menuH, itemNumber, itemString)
MenuHandle menuH;

short itemNumber;
char* itemString;

Sets the text for the specified item.

itemNumber is one-based. Thefirst item in the menu is number 1.

itemString is the new text for the item.

Y ou can set the text for your own items but you must never set the text for Igor's items.
void

DisableItem(menuH, itemNumber)

MenuHandle menuH;
short itemNumber;

Disables (grays out) the specified menu item.

itemNumber is one-based. Thefirst item in the menu is number 1.

Y ou can disable items from your own menus but you must never disable items from Igor's menus.
void

EnableItem(menuH, itemNumber)

MenuHandle menuH;
short itemNumber;

Enables the specified menu item.
itemNumber is one-based. The first item in the menu is number 1.

Y ou can enable items from your own menus but you must never enable items from Igor's menus.

503

Chapter 13 — XOPSupport Routines - Macintosh Emulation

504

void

CheckItem(theMenu, itemNumber, checked)
MenuHandle theMenu;

short itemNumber;

int checked;

Adds a check mark to or removes a check mark from the specified menu item.
itemNumber is one-based. Thefirst item in the menu is number 1.

You can call this routine on your own menu items but you must never call it on Igor's menu
items.

Miscellaneous Emulated Macintosh Routines

unsigned long
TickCount (void)

On Macintosh, TickCount returns a count of the number of ticks that have elapsed since the Mac
OS started up. On Windows, it returns a count of the number of ticks that have elapsed since Igor
started up.

A tick is approximately one sixtieth of a second. TickCount is a simple way to determine the
amount of time that has elapsed from one point in the program to ancther.

Appendix / \

XOP Toolkit 5 Upgrade Notes

L@ Y= VT S 507
Changes Y ouU MUSE MEKE..........ooiiiriiieieeceeesese s 507
Change Y our XOPI RESOUICEccueiuiiuieriesieeeesieseeee e see s ste e stesreeaesre e 508
XOP TOOIKIt 5 NEW FEEIUIESoivieeieiiriiniesiesie e 509
Reorganization Of XOP ToolKit FOIAENS.........ccorireiieeirineneseeee e 510
Reorganizing Your XOP FOIAErS ..o iiieeiececece e 512
Reorganizing a CodeWarrior Pro 8 Project Folder..........cccccvvveveevvieennee. 512
Reorganizing aVisual C++ 6 Project FOIdercoovvvieiinenincneeeee 513
Reorganizing aVisual C++ 7 Project FOIdercooeveienenineseeceeee 514
SEUCIUrE ATIGNMENE ...ttt 515
XOPSUPPOIt ACGITIONS......ccceiviiiieieieiseeie st 516
Apple-Related Changes...........ccoviiiiiireeeeeee e 518
Apple Resource DEfiNition SYNtaXxccccceceeveevececcie s e 518
LITTLE_ENDIAN SymbBOlcccooiiiiiniiiiieiecsesese s 518
DOUBLE and dOUDBIE..........coeieieieeeecece e 518

505

Appendix A — XOP Toolkit 5 Upgrade Notes

506

Appendix A — XOP Toolkit 5 Upgrade Notes

Overview
These notes are for XOP programmers transitioning from XOP Toolkit 3.1 to XOP Toolkit 5.

XOP Toolkit Version 5 provides support and samples for creating XOPs using these devel opment
systems:
For Mac OS XOPs:
Metrowerks CodeWarrior Pro 8.3 or later (Mac OS 9 or Mac OS X)
Apple's Xcode (Mac OS X 10.3 or later)

For Windows X OPs:
Microsoft's Visual C++ 6
Microsoft's Visual C++ 7 (known as Visual C++.NET)

The CodeWarrior Pro 8.3 project also work with "CodeWarrior Development Studio v9 for Mac
OS" which is Metrowerks' latest Macintosh development system.

If you are an experienced programmer then you should be able to compile X OPs using other
development systems after reading the X OP Toolkit documentation on setting up projects for the
systems listed above.

XOP Toolkit 5 can create XOPs compatible with Igor Pro 4 or Igor Pro 5. Y our XOP will run
under Igor Pro 4 only if you avoid Igor Pro 5-specific features, which are listed below.

The support and sample files for XOP Toolkit 5 comein afolder named 1gorXOPs5. If you have
existing XOP projects, it is recommended that you copy them into the IgorX OPs5 folder. Leave
your old projects as they are and do all new development in the new folder.

All of the new XOP Toolkit 5 features require Igor Pro 5. If your XOP must support Igor Pro 4,
you must not use these new features. Since life is complicated enough already, we recommend
that you do new X OP development for Igor Pro 5 and let any Igor Pro 4 users continue to use the
old version of your XOP.

Changes You Must Make
There are afew things that you must do to make your old X OPs work with XOP Toolkit 5:

1. Change your XOPI resource. Thisis described below under Change Your XOPI Resource.

2. Change your project to reference the new XOPSupport library. Depending on your
development system, this will be one of the following:

507

508

Appendix A — XOP Toolkit 5 Upgrade Notes

CodeWarrior [gorX OPs5: X OPSupport: CW8: X OPSupport CFM.lib
Xcode [gorX OPs5/X OPSupport/X code/ X OPSupport.lib
Visual C++ 6 IgorX OPs5\X OPSupport\V Ce\X OPSupport.lib
Visua C++ 7 (.NET) | gorX OPsE\X OPSupport\V C7AX OPSupport.lib

3. Change the pragmas that control structure alignment. See Structure Alignment below.

4. If you have existing CodeWarrior CFM X OPs, double-check that the entry points specified in
the PPC Linker settings pane of your project settings are correct. They should be as follows:

Initialization: initialize
Main: main
Termination: terminate

In previous versions of the XOP Toolkit, the initialization and termination entry points were
left blank. This does not appear to cause a problem in C XOPs but it does cause a problem in
C++ XOPs. At any rate, it is best to set the entry points for all CodeWarrior CFM X OPs.

Change Your XOPI Resource

Igor looks at your XOP's 'XOPI' resource to get information about your XOP during Igor's
initialization. For XOP Toolkit 5, change your Macintosh "X OPI' resource (in, for example,
XOPL.r) to this:

resource 'XOPI' (1100) {

XOP_VERSION, // XOP protocol version.

DEV_SYS CODE, // Development system information.
0, // Obsolete - set to zero.

0, // Obsolete - set to zero.
XOP_TOOLKIT VERSION, // XOP Toolkit version.

}i
Change your Windows 'X OPI' resource (in, for example, XOP1WinCustom.rc) to this:

1100 XOPI

BEGIN
XOP_VERSION, // Version number of host XOP system.
DEV_SYS CODE, // Development system information.
0, // Obsolete - set to zero.
0, // Obsolete - set to zero.
XOP_TOOLKIT VERSION // XOP Toolkit version.

END

Appendix A — XOP Toolkit 5 Upgrade Notes

XOP Toolkit 5 New Features

The process for creating an external command line operation has been simplified through the use
of anew component of Igor Pro 5 called Operation Handler. Operation Handler does al of the
parsing of command parameters for you. All you need do isto define your operation’s syntax,
register it when your XOP is launched, and supply the address of the function that Igor should
call when your operation isinvoked. See Operation Handler on page 151 for details.

External operations created using Operation Handler can be called from Igor user-defined
functions. XOPs have to be rewritten to take advantage of this and in some cases (e.g., VDT and
NIGPIB) the new XOPs might need different syntax from the old ones.

XOP Toolkit 5 and Igor Pro 5 support Apple's Mach-O binary executable format for XOPs. This
makes it possible to use OS X frameworks from X OP projects. See Macintosh CFM Versus
Mach-O on page 6 and Mach-O XOP Projectsin CodeWarrior Pro 8 on page 75 or XOPsin
Xcode on page 79 for details.

Y ou can create X OPs using Apple's X code devel opment system. Such XOPs will run with Igor
Pro 5 or later. See XOPsin X code on page 79 for details.

XFUNCs can have pass-by-reference parameters. See Pass-By-Reference Parameters on page 198
for details.

XOPs can call user-defined functions and external functions added by other XOPs. See Calling
User-Defined and External Functions on page 285 for details.

External operations and functions can receive lgor structures as parameters. This requires Igor
Pro 5.03 or later. See Using Igor Structures as Parameters on page 281 for details.

XOP Toolkit 5 includes two new sample projects.

NIGPIB2 A revamp of NIGPIB which uses Operation Handler to
supports calling external operations from Igor user functions.

VDT2 A revamp of VDT which uses Operation Handler to
supports calling external operations from Igor user functions.

509

Appendix A — XOP Toolkit 5 Upgrade Notes

510

Reorganization Of XOP Toolkit Folders

To make it easier to support multiple devel opment systems, the organization of the XOP Toolkit
folders has been changed. Previously an XOP folder looked something like this:

XOP1
XOP1l.c
XOP1l.r
XOP1 Mac
XOP1 Mac Data
XOP1.xop
XOP1 Help.ihf

or like this:

XOP1
XOP1l.c
XOP1l.rc
XOP1l.dsp
XOP1.dsw
XOP1.xop
XOP1 Help.ihf

//
//
//
//
//

//
//
//
//
//

Macintosh resource file
CodeWarrior Project file
CodeWarrior Project folder
Compiled XOP file

XOP help file

Windows resource file
Visual C++ 6 Project file
Visual C++ 6 Workspace file
Compiled XOP file

XOP help file

With XOP Toolkit 5, the devel opment-system-specific files have been moved into subdirectories.
The resulting organization looks like this:

XOP1
XOP1l.c
XOP1l.r
XOPl.rc
XOP1 Help.ihf

CW8
XOP1l.mcp
XOP1 Data
XOP1.xop

Xcode
XOP1.xcode
project.pbxproj
XOP1.xop

VvCe
XOP1.dsp
XOP1.dsw
XOP1.xop

//
//
//

//
//
//
//

//
//
//
//

//
//
//
//

Macintosh resource file
Windows resource file
XOP help file

Folder for CodeWarrior Pro 8 project files
CodeWarrior Project file

CodeWarrior Project folder

Compiled XOP file

Folder containing Xcode project files
Xcode project folder

Xcode project file

Compiled XOP file

Folder for Visual C++ 6 project files
VC6 Project file

VC6 Workspace file

Compiled XOP file

Appendix A — XOP Toolkit 5 Upgrade Notes

vC7 // Folder for Visual C++ 7 (.NET) project files
XOP1.vcproj // VC7 Project file
XOP1l.sln // VC7 Solution file
XOP1 .x0p // Compiled XOP file

"VC7" refersto Microsoft's Visual C++ version 7, better known as Visual C++ .NET.

Note that the compiled XOP fileis stored in the development system folder (e.g., VC6) so that
you can compile the X OP on multiple development systems without conflict.

Note a'so that the XOP help file is not in the same folder as the executable X OP. Igor will not
find the XOP help file there. Y ou will have to move it into the same folder as the XOP itself.

The XOPSupport folder, to which all XOP projects refer, also now contains CW8, Xcode, VC6
and VC7 folders. The XOPSupport library files are in those folders.

511

512

Appendix A — XOP Toolkit 5 Upgrade Notes

Reorganizing Your XOP Folders

If you are updating an existing X OP to use XOP Toolkit 5, you need to remove your old

XOPSupport library and add the new XOPSupport library. The new XOPSupport library isin:
IgorXOPs5:XOPSupport : CW8

or

IgorXOPs5 : XOPSupport : VC6
or

IgorXOPs5 : XOPSupport : VC7

Y ou do not need to do any further reorganization of your XOP folder. However, if you want to
reorganize your XOP folder to be like the XOP Toolkit organization, which we recommend if
thereis any chance that you might use more than one development system, hereis how you do it:

Reorganizing a CodeWarrior Pro 8 Project Folder
1. Openyour XOP folder.

2. Movethe CodeWarrior project file and the associated data folder into afolder named CW8
inside your XOP folder as shown above for the XOP1 sample. Add the .mcp extension to the
project fileif necessary.

Open the project filein CodeWarrior Pro 8 or later.
Open the project settings window.
5. Change the access paths from:
{Project}:
{ Project} :: X OPSupport:
to
{Project} : (The folder containing your .c and .h files.)
{Project}:::XOPSupport: (The IgorXOPs5: X OPSupport folder.)
Save and close the project window.

Remove the old X OPSupport library and add the new one
(IgorX OPs5/X OPSupport/CW8/X OPSupport CFM .lib).

Appendix A — XOP Toolkit 5 Upgrade Notes

Reorganizing a Visual C++ 6 Project Folder

1

o g b~ W

10.
11.

12.

13.

Open your XOP folder.

Move the VC6 project file (.dsp) and the associated workspace file (.dsw) into a folder named
VC6 inside your XOP folder as shown above for the XOP1 sample.

Open the workspace filein Visual C++ 6.
Click the FileView tab in the Workspace window.
Removethe .rc file and add it back using Project->Add To Project->File.

Right-click theicon for each source (.c or .cpp) file, choose Properties, and change the
"Persist As' path to the source file. For example, if the "Persist As' is:

AXOP1.c

changeit to:
.\XOP1.c

Change the "Persist As' path for the Igor.lib file to:
.\.\XOPSupport\Igor.lib

Remove the old XOPSupport library file (XOPSupportX86.lib) and add the new one
(IgorX OPs5\X OPSupport\V Ce\X OPSupport.lib).

Open the project settings window.
Choose All Configurations from the Settings For popup menu.
Click the C++ tab, choose the Preprocessor category and change
.\XOPSupport
to
.\..\XOPSupport
Click the Resources tab and change
.\XOPSupport
to
.\..\XOPSupport
Click OK to close the project settings dial og.

513

Appendix A — XOP Toolkit 5 Upgrade Notes

514

Reorganizing a Visual C++ 7 Project Folder

1
2.

o g b~ W

10.

11.

12.

Open your XOP folder.

Move the VC7 project file (.vcproj) and the associated solution file (.sln) into afolder named
VC7 inside your XOP folder as shown above for the XOP1 sample.

Open the solution filein Visual C++ 7.
Click the FileView tab in the Workspace window.
Remove all of the source files and add them back using Project->Add To Project->File.
Remove the XOPSupport library file and add
IgorX OPs5\X OPSupport\V C7AX OPSupport.lib.
Remove the Igor.lib library file and add
IgorX OPs5\X OPSupport\lgor.lib
Open the project settings window.
Choose All Configurations from the Settings For popup menu.
Click the C++ tab, choose the Preprocessor category and change
.\XOPSupport
to
.\..\XOPSupport
Click the Resources tab and change
.\XOPSupport
to
.\..\XOPSupport
Click OK to close the project settings dialog.

Appendix A — XOP Toolkit 5 Upgrade Notes

Structure Alignment

All structures passed between Igor and an XOP must be two-byte aligned. Otherwise a crash will
occur. To ensure this alignment, you need to use pragmas to tell the compiler to align such
structures on two byte boundaries.

In XOP Toolkit 3.1, this was done by putting something like thisin your source files:

#if GENERATINGPOWERPC
#pragma options align=macé8k
#endif
#ifdef WINDOWS
#pragma pack (2)
#endif

. structure definitions here .

#if GENERATINGPOWERPC
#pragma options align=reset
#endif
#ifdef WINDOWS
#pragma pack ()
#endif

With XOP Toolkit 5, use the following cleaner and functionally equivalent technique:
#include "XOPStructureAlignmentTwoByte.h"
. define structures here .

#include "XOPStructureAlignmentReset.h"

When you update your old XOPs to use XOP Tookit 5, replace the old #if statements with this
new #include statement.

An early betaversion of XOP Toolkit 5 used #defines named XOP_SET_STRUCT_PACKING
and XOP_RESET_STRUCT_PACKING for this purpose. However, this turned out to be
incompatible with the GCC compiler used in Apple's Xcode development system. If you are an
early beta tester and you have these #definesin your code, use the new technique instead.

515

516

Appendix A — XOP Toolkit 5 Upgrade Notes

XOPSupport Additions

These new X OPSupport routines are documented in Chapter 13. Unless otherwise noted, the new
routines were added in XOP Toolkit release 5.00. Some of these routines require specific versions

of Igor. See Chapter 13 for details.

Routine

Description

GetCStringFromHandle

Converts from Igor string in handle to C string.

PutCStringlnHandle

Convertsfrom C string to Igor string in handle.

Wavel ock Supports Igor Pro 5 wave locking feature.
SetWavel ock Supports Igor Pro 5 wave locking feature.
RegisterOperation Used with Operation Handler.

SetOperationNumericVariable

Call only from Operation Handler “execute” function.

SetOperationStringVariable

Call only from Operation Handler “execute” function.

SetFilel oaderOperationOutput
Variables

Use thisin place of SetFilel oaderOutputV ariables when
using Operation Handler. It setslocal variables when
called from a user-defined function.

VarNameToDataType

Cdll only from Operation Handler “execute” function.

StoreNumericDataUsingVarName

Call only from Operation Handler “execute” function.

StoreStringDataUsingVarName

Call only from Operation Handler “execute” function.

GetFunctionlnfo

Used to call a user-defined function from your X OP.

CheckFunctionForm

Used to call a user-defined function from your XOP.

CallFunction

Used to call a user-defined function from your X OP.

DateT ol gorDatel nSeconds

Returns a date in Igor format (seconds since 1/1/1904).

IgorDatel nSecondsToDate

Converts adate from Igor format to day, month, year

£ nvinn

Appendix A — XOP Toolkit 5 Upgrade Notes

Routine

Description

GetCStringFromHandle

Convertsfrom Igor string in handle to C string.

format.

HFSToPosixPath

Converts HFSfile path to Posix.
Added in release 5.03.

GetNVAR, SetNVAR, GetSVAR,
SetSVAR

Allow external function to access structure fields.
Added in release 5.03.

GetLeafName Returns leaf part of afile path.

Added inrelease 5.04.
GetTextWaveData, Provide faster access to text wave data.
SetTextWaveData

Added in release 5.04.

GetWaveDimensionL abels,
SetWaveDimensionL abels

Provide faster access to wave dimension |abels.
Added in release 5.04.

SetOperationWaveRef Sets destination wave in external operation.
Added in release 5.04.

MDChangeWave2 Redimensions wave without changing its data.
Added in release 5.04.

ISINF32, IsSINF64 Testsif number isinfinity.

Added in release 5.04.

ScaleClipAndRound

Scales, clips and rounds array of data.
Added in release 5.04.

517

518

Appendix A — XOP Toolkit 5 Upgrade Notes

Apple-Related Changes
The following changes in Apple' s header files may requires changes to your XOP.

Apple Resource Definition Syntax

The file XOPStandardHeaders.r previously contained some #defines (e.g. #define
DLOG_RezTemplateVersion 0) that allowed old syntax when defining resources of the following
types. cfrg, ALRT, DLOG, wcth, WIND, PICT, clut. These #defines alowed XOP programmers
to use old versions of Apple resource definitions.

To get up with the times, this version of X OPStandardHeaders.r omits those #defines. If you
relied on them, you will get errors when compiling your resources. In most cases, the fix isto add
aline to the resource definition. For example, here is a new resource definition with the added
line indicated by a comment:

resource 'DLOG' (1260)
{50, 30, 430, 620},
movableDBoxProc,
invisible,
noGoAway,
0x0,
1260,
"Load General Binary",
noAutoCenter // <- Added this line.

}i

Thefix above appliesto DLOG, ALRT and WIND resources. For details, consult Apple's
documentation on resource definition formats or 0ok at the definition of the resource in Apple's
resource files (e.g., Dialogs.r., MacWindows.r, etc.).

LITTLE_ENDIAN Symbol

Previously the file XOPStandardHeaders.h defined LITTLE_ENDIAN if and only if the compile
was on a Windows system. Apple has now stolen that symbol from us so we have changed it to
XOP_LITTLE_ENDIAN.

If your code relieson the LITTLE_ENDIAN defined in XOPStandardHeaders.h, you must
changeitto XOP_LITTLE_ENDIAN.

DOUBLE and double

Previously the XOP Toolkit defined the symbol DOUBLE to mean double. This was |eft over
from the days when a double on Macintosh could be 8 bytes or 10 bytes, depending on whether a
program was compiled to use a math coprocessor. XOP Toolkit 5 no longer uses DOUBLE but it
isstill defined in IgorXOP.h so that old XOPs will continue to compile.

Appendix B

Porting Macintosh XOPs to Carbon

L@ Y= VT S 521
XOP Toolkit 3.13 Release Notes, June 28, 2002ccveeeeieeveeeeiiieee s eeeee s 522
Issues Relating To Carbon And Igor XOPS ..o, 522
What Y ou Need To Develop A Carbon XOPcccocvveveiiece e 523
Porting An Existing Mac XOP To Carbon...........ccoeoeieiiieinneceee 523
Changes To Existing X OPSUpport ROULINES...........cccoeeieveerieieeneseeeesre e, 525
ODbsOlete XOP MESSAQESc.eecviieieieitieie st steee sttt ee sttt sae e 527
Obsolete XOPSUPPOIt GIODEAIS........ccciveeririnieriesiesieee e 527
Obsolete XOPSUPPOrt ROULINES...........ooiiieieeeesesesie e 527
New XOPSUPPOIt ROULINES.........cccoiiieeeieiieiee e ste ettt ae s enaesne s 530
Menu Items Added By STR#Z 1101ccooceeeeiiveeieneeeesteseeee e neen 530
Dialogs Under CarbOon...........cocuiiriiiieeceseses e 531

Moveable DIialog BOX.......cccoeeiiiiiieieceece et 532

Default and Cancel Dialog ItemS.........cccoveeeeveieccse e 532

Macintosh Dialogs With POPUP MENUS...........ccceeierininineseseeeeeeeeeee 532

Other Controls IN DIialOgs.......ccoiiuieierieiiere et sre s 534
Carbon APl Versus ClassiC MaC APl ... 535
ACCESSING RESOUICES ...ttt 536
(01 Tc g 5SS T S 537
Changes That Affect Windows XOPS..........ccccoiviieieieese e 537

519

Appendix B - Porting Macintosh XOPs to Carbon

520

Appendix B - Porting Macintosh XOPs to Carbon

Overview

“Carbon” isthe name of the Apple API that supports programming under Mac OS X aswell as
Mac OS 9. In order to run native on Mac OS X, WaveMetrics had to port Igor to the Carbon AP,
which is asubset of the original Macintosh API. We did thiswith Igor Pro 4.05. At that time there
was a pre-Carbon Igor Pro 4 and a Carbon Igor Pro 4.

Igor Pro 5 and XOP Toolkit 5 are Carbon-only.

In order for a Macintosh XOP to run native on Mac OS X and to run with Igor Pro 5, it must also
use the Carbon API. If you have a pre-Carbon X OP that you want to run with Igor Pro 5 on
Macintosh, you must port it to Carbon. This appendix tells you what you need to do.

The following are the rel ease notes provided with the XOP Toolkit 3.13 - the first version that
supported Carbon XOPs. Keep in mind that these notes were written before Igor Pro 5 and XOP
Toolkit 5 existed. “Igor” refersto Igor Pro 4. Some parenthetical comments have been added to
clarify statements in the notes that are now out-of-date.

521

Appendix B - Porting Macintosh XOPs to Carbon

XOP Toolkit 3.13 Release Notes, June 28, 2002
Read this section if you used used XOP Toolkit 3.12 to create Carbon X OPs.

In release 3.13, we have changed the construction of CodeWarrior Carbon XOPs. The sample
XOPs and instructions in release 3.12 were based on sample CodeWarrior projects distributed
with Apple's Carbon SDK. With this release, the Carbon XOPs are constructed to match
CodeWarrior's stationery projects. Under the new setup, Apple's Carbon SDK and its Carbon
Support folder are no longer needed.

If you have your own Carbon XOPs based on XOP Toolkit 3.12 samples, you might want to
update your XOPs. First make a backup of your existing XOP files. Then follow these steps:

1. Inthe project settings window, display the Access Paths pane and remove the Carbon Support
access path.

2. Inthe project settings window, display the C/C++ Language pane and change the prefix file
to "MacHeadersCarbon.h".

3. If you are using C++, display the PPC Linker pane and set the Initialization field to
__initidlize. Set the Termination fieldto __terminate.

Save and close the project settings.
Add the following file to the ANSI Libraries section of the project window:

MSL_AIll_Carbon.Lib
6. Remove the following files from the project window:

MSL_Runtime PPC.Lib
MSL_C_Carbon.Lib
MSL_C++_Carbon.Lib
console.stubs

To remove thefiles, select them and then click and hold until a popup menu appears. Select Clear
from the popup menu.

Issues Relating To Carbon And Igor XOPs

Carbon is Apple's APl which allows a devel oper to write a program that will run under Mac OS 9
and Mac OS X. Some origina Mac OS API routines are not supported in Carbon and Carbon
implements some new routines. In order to support Mac OS X, WaveMetrics has " carbonized"
Igor Pro. "Carbonizing" means using Apple's Carbon header files, linking with Apple's
CarbonLib instead of old libraries such as InterfaceLib, and restricting OS calls to the Carbon
API.

522

Appendix B - Porting Macintosh XOPs to Carbon

Carbon Igor runs under Mac OS 9.1 and Mac OS X. It does not run under Mac OS 8.x. (Igor Pro
5 requires Mac OS 9.2 or later.)

Here are the main ramifications on XOPs of the conversion of Igor to a Carbon application.

1. The XOP Toolkit has been revised to use Carbon. New XOP devel opment should use the
Carbon XOP Toolkit, use the Carbon headers and link with CarbonLib. These XOPs will run
with Igor Pro Carbon on Mac OS 9.1 and Mac OS X. They will not run with pre-Carbon Igor
Pro.

2. lgor Pro Carbon does not supports 68K XOPs. If you rely on a 68K XOP, your choices are to
stick with the pre-Carbon Igor or to port your XOP to PowerPC, using the Carbon XOP
Toolkit.

3. For the most part, pre-Carbon PowerPC XOPs will continue to work with Igor Pro Carbon
when running under Mac OS 9.1.

In order to run under Mac OS X, all XOPs must be carbonized.

Carbonized X OPs can run only with a carbonized version of Igor. Apple's Carbon library
does not support running in a pre-Carbon application. It reports and error -2821.

What You Need To Develop A Carbon XOP

To compile a Carbon XOP, you need the following:
XOP Toolkit Carbon
CodeWarrior Pro 7 or later
(XOP Toolkit 5 requires CodeWarrior Pro 8 or later, or Apple’ s Xcode.)

Porting An Existing Mac XOP To Carbon

Y our old XOP project folder should be completely backed up or you should work on a
completely new copy of it.

Open your old project in CodeWarrior Pro 7 or later.

If your old project was based on a WaveMetrics example, it may have three targets. 68K, PPC
and FAT. You can see the targets by clicking the Targets tab of the CodeWarrior project window.
Delete the 68K and FAT targets. They are not needed because Carbon does not support 68K code.
(To delete anicon in the CodeWarrior project window, click and hold till you see a popup menu.
Then choose Clear from the popup menu.)

Click the Files tab, open any folder icons, and delete any 68K libraries.

If thereisafolder icon named FAT Target Filesin the CodeWarrior project window, delete it.

523

Appendix B - Porting Macintosh XOPs to Carbon

524

In your CodeWarrior Settings window, under Access Paths, in the System Paths section, you
should have just the following two access paths:

{ Compiler} MacOS Support

{Compiler} MSL

In your CodeWarrior Settings window, under Runtime Settings, change the Host Application to
point to your carbonized Igor Pro application file.

In your CodeWarrior Settings window, under PPC Target, change the File Name to <name of
your XOP>.xop (e.g., XOP1.xop).

In your CodeWarrior Settings window, under C/C++ Language, set Prefix File to
"MacHeadersCarbon.h" (without the quotes).

If thisisa C++ XOP, in your CodeWarrior Settings window, under PPC Linker, set the
Initialization field to __initialize. Set the Termination field to __terminate. (That change should
be made for C XOPs aswell as C++.)

Save and close the project settings window.

Old XOPs linked with a number of Apple libraries such as Interfacelib and MathLib. Y ou must
replace al of these in your CodeWarrior project with CarbonLib and CarbonFrameworkLib,
which you can find in;

"MacOS Support:Universal:Libraries:StubLibraries"

Add the CodeWarrior library MSL_All_Carbon.Lib and remove all other MSL libraries. At this
point, atypical Carbon XOP will have the following libraries:
Mac Libraries
CarbonLib
CarbonFrameworkLib
ANSI Libraries
MSL_AIl_Carbon.Lib
Igor Libraries
XOPSupport PPC.Lib

In your source code, any XOP code insidea XOP_GLOBALS ARE_A4 BASED ifdef or an
applec ifdef can be removed. This code ran on 68K only.

The LoadX OPSegs X OPSupport routine is obsol ete and has been removed. If this appears in your
source code (in your main function), removeit.

In your source code, replace GENERATINGPOWERPC (now obsolete) with
TARGET_CPU_PPC.

Appendix B - Porting Macintosh XOPs to Carbon

In your source code, replace any call to FrontWindow with a call to GetActiveWindowRef. This
is necessary because Igor Pro Carbon includes a floating help window. GetA ctiveWindowRef
calls the Mac OS FrontNonFloatingWindow routine.

If your XOP creates a dialog based on WaveMetrics examples:

1. Search your source code for "XOP_WINDOW_REF theDialog" and replace it with
"XOP_DIALOG_REF theDialog".

2. Search your source code for " SetDialogPort(savePort);" and replace it with
" SetPort(savePort);".

If you have acallsto aroutine named "PopMenu”, delete them.

>

If you have a call to routines named "BoxItem", delete them.

See Dialogs Under Carbon below for further details.

When compiling with the Carbon Igor XOP, your XOP will have access to the Carbon API only.
This APl restriction istriggered by the fact that the XOPStandardHeaders.h file contains the
following statement:

#define TARGET API MAC CARBON 1
(In XOP Toolkit 5, this #define is done by system headers, not X OPSupport headers.)

If your XOP does just number-crunching, this API change will probably not affect you. If your
XOP includes a user-interface, it will affect you. If you use unsupported APIs, you will get errors
when you compile. Problems that are commonly encountered in XOPs are described below. If
your XOP is advanced, you will need to read the document "Carbon Porting Guide", which is
included with Apple's Carbon SDK, to finish carbonizing your X OP.

Changes To Existing XOPSupport Routines
Changed DeleteM enultems to WM Del eteM enultems because Apple usurped DeleteM enultems.

SelEditItem(theDialog, itemNumber)

Prior to XOP Toolkit 4.0 (Carbon), if itemNumber was O, this routine used the currently-selected
edit item. This feature did not fit in with the Carbon way of doing things and is no longer
supported. The itemNumber parameter must be the item number of an edit text item.
SetDialogPort (DialogPtr theDialog)

Previously this was defined as returning a WindowPtr. Now it is defined as returning a CGrafPtr.

525

Appendix B - Porting Macintosh XOPs to Carbon

526

SetDialogBalloonHelpID

This function previously worked with the Apple Balloon Help Manager. Carbon does not support
Balloon Help. However, this function now links with the contextual help window in Carbon Igor.
As before, it does nothing on Windows.

XOPOpenFileDialog

This routine now uses the Macintosh Navigation Manager. The construction of the fileFilterStr
parameter has changed and the filelndexPtr parameter is now used on Macintosh as well as
Windows.

Prior to Carbon, the fileFilterStr was a concatenation of zero or more Macintosh file types, like
"TEXT" or "TEXTABCD". Now this parameter provides control over the Show popup menu
which the Macintosh Navigation Manager displaysin the Open File dialog. As a consequence, the
fileFilterStr is constructed differently. For example, the string "Text Files TEXT:.txt;All
Files:****::" results in two items in the Show popup menu.

The filelndexPtr parameter provides a mechanism to save and restore the state of the Show popup
menu between calls to XOPOpenFileDialog.

See the documentation for XOPOpenFileDialog for further details.

XOPSaveFileDialog

ThefileFilterStr and filelndexPtr parameters, which previously were not used on Macintosh, now
specify the types of files that can be save, if you allow saving in more than one format. See the
documentation for XOPSaveFileDialog for details.

FileLoaderGetOperationFlags

As of the Carbon XOP Toolkit, FilelL oaderGetOperationFlags is no longer supported. It used
working directory reference numbers, which are not supported by Carbon. Use
Filel oaderGetOperationFlags2 instead.

GetFullMacPathToDirectory

Prior to Carbon, this routine accepted either a volume reference number and directory ID or a
working directory reference number and zero. Carbon does not support working directory reference
numbers, so this routine now supports only a volume reference number and directory ID.

CreatePopMenu

Prior to the Carbon XOP Toolkit, on Macintosh the item identified by the titleltemNumber
parameter was highlighted when the user clicked on the popup menu. As of the Carbon XOP
Toolkit, it is no longer used but must be present for backward compatibility.

Appendix B - Porting Macintosh XOPs to Carbon

Obsolete XOP Messages

The LOAD and SAVE messages are obsolete and are no longer sent to XOPs. Use the
LOADSETTINGS and SAVESETTINGS messages instead.

Obsolete XOPSupport Globals

The following XOP Toolkit globals are obsolete and have been removed:
hasFPU has68KHardwareFPU

Obsolete XOPSupport Routines

The following X OP Toolkit routines are obsolete and have been removed.

GetA4, SendXOPA4ToIgor
These were used by 68K XOPs only and 68K X OPs are no longer supported.

QDPointer

Replace with accessor routines defined in QuickDraw.h such as GetQDGlobal sThePort.

EditItem
This routine did not fit in with the Carbon way of doing things. Thereis no equivalent Mac OS or
XOPSupport routine.

ReleaseMenu

Apple created aroutine also named ReleaseMenu. The old XOP Toolkit ReleaseMenu called the
Apple ReleaseResource routine. However, thisis no longer valid because Apple changed the
behavior of GetMenu in Carbon. In the unlikely event that you used the X OP Toolkit

ReleaseM enu routine, Apple's new ReleaseMenu is probably still appropriate.

SetPopMenu

Use CreatePopMenu instead.

PopMenu

Thisis not needed because the operating system pops popup menus up. If you use this routine,
delete the call to it.

GetSymbolicPath

527

Appendix B - Porting Macintosh XOPs to Carbon

528

This used working directory reference numbers which are not supported by Carbon. Use
GetSymb and GetName followed by GetPathinfo2 instead.

char fileDirPath[MAX PATH LEN+1];

int err;

if (GetSymb() != '=') {
err = NOEQUALS;

else {
err = GetName (pathName) ;
if (err == 0)

err = GetPathInfo2 (pathName, fileDirPath) ;

}

GetStandardFileVRefNumAndDirID, SetStandardFileVRefNumAndDirID

The following Macintosh-only X OPSupport routines are no longer supported because thereis no
way to implement them under Carbon and they are of little use.
GetStandardFilePath, SetStandardFilePath

These Macintosh and Windows X OPSupport routines are no longer supported because there is no
way to implement them under Carbon and they are of little use. The XOPOpenFileDialog and
XOPSaveFileDialog routines provide similar functionality through their initial Dir parameters.
FileFullySpecified

This used working directory reference numbers which are not supported by Carbon. Use

GetFull PathFromSymbolicPathAndFilePath and/or Full PathPointsToFile instead.

GetVRefNumAndDirIDFromFullPath

This routine was provided only for the benefit of existing Macintosh XOPs. The implementation
was not suitable for Carbon. New X OPs use platform-independent techniques and don't require
thisroutine. If you used this routine and need it, see Apple's LocationFromFullPath routine in the
file FullPath.c in the MoreFiles sample code supplied with the Carbon SDK.
OpenFileReadOnly, StdGetFile, StdPutFile

These routines used working directory reference numbers which are not supported by Carbon.

XOPOpenResFile, XOPUseResFile, XOPCloseResFile

These routines can not be supported on Mac OS X. See Accessing Resour ces below for further
information.

Appendix B - Porting Macintosh XOPs to Carbon

SetDItemProc

This routine set the draw procedure for a Userltem in adialog. Modern dialogs generally don't
use Userltems because the Mac Appearance Manager provides sufficient standard controls. If you
find that you do need this routine, call the Carbon SetDialogltem routine instead.

BoxItem

This routine turns a Userltem into a box. Modern dialogs generally don't use Userltems because
the Mac Appearance Manager provides sufficient standard controls, such as group boxes. If you
use this call, you need to change the DITL item into a GroupBox control (see Other ControlsIn
Dialogs) and then remove the Boxltem call.

XOPDialog
The first parameter was previously of type Moda FilterProcPtr. It is now of type ModalFilterUPP.
XOPDiaog now calls the Mac OS StdFilterProc to detect the user pressing return or escape. To

support this, you must make the following calls after you call GetXOPDiaog and before you call
XOPDidog:

SetDialogDefaultItem(theDialog, <item number of your default buttons) ;
SetDialogCancellItem(theDialog, <item number of your cancel buttons) ;
SetDialogTracksCursor (theDialog, 1) ;

Asof Carbon 1.3, calling SetDialogDefaultltem on a disabled button sets the button to the
enabled state. This appears to be aMac OS bug.

GetXOPMenulD
Use ResourceToActualMenul D instead. See Menu Items Added By STR# 1101 for details.

GetXOPItemID
Use ResourceToActual Item instead. See Menu Items Added By STR# 1101 for details.

GetXOPSubMenulD
Use ResourceToActualMenul D instead. See Menu Items Added By STR# 1101 for details.

GetXOPSubMenu

Use ResourceMenulDToMenuHandle instead. See Menu Items Added By STR# 1101 for
details.

EnableXOPMenultem
Use EnableMenultem instead. See Menu Items Added By STR# 1101 for details.

529

Appendix B - Porting Macintosh XOPs to Carbon

SetXOPItem
Use SetMenultemText instead. See Menu Items Added By STR# 1101 for details.

DisposeXOPSubMenu

There is no need to dispose X OP submenus anymore. See Menu Items Added By STR# 1101
for details.

DefaultMenus

This has been aNOP since 1992 so you can just removeit.

New XOPSupport Routines
The following X OP Toolkit routines have been added:

int IsMacOSX (void)

Macintosh only. Returns the truth that we are running under Mac OS X.

void CheckItem (MenuHandle menuH, short item, int checked) ;

short CountMItems (MenuHandle menuH) ;

void DisableItem (MenuHandle menuH, short item) ;

void EnableItem (MenuHandle menuH, short item) ;

void getmenuitemtext (MenuHandle menuH, short itemNumber, char* itemString) ;
void setmenuitemtext (MenuHandle menuH, short itemNumber, char* itemString);
void insertmenuitem(MenuHandle menuH, char *itemString, short after);

void appendmenu (MenuHandle menuH, char *itemString) ;

These routine used to be provided by the Mac OS on Macintosh and by the XOP Toolkit on
Windows. In Carbon, Apple renamed or removed them. To avoid breaking old XOPs, they now
provided by the XOP Toolkit on both platforms.

XOPSetContextualHelpMessage (XOP_WINDOW REF w, const char* msg, const Rect* r)

Allows an XOP to provide tips for controls and icons in its window. See the comment in
XOPSupport.c for details.

Menu Items Added By STR# 1101

If your XOP adds a menu item to Igor using the STR#,1101 resource, you must modify it for the
Carbon XOP Toolkit. This was a deprecated technique supported only on Macintosh and is no
longer supported in the Carbon XOP Toolkit. Y ou must use the XMI1 resource instead. Thisis
simple. Just copy the XMI1 resource from GBLoadWave.r, pasteit into your .r file, and modify it
for your purposes.

530

Appendix B - Porting Macintosh XOPs to Carbon

The following XOP routines, which supported the STR#,1101 method of adding a menu item,
have been removed from the Carbon XOP ToolKkit:

GetXOPMenuID - Use ResourceToActualMenuID instead.

GetXOPItemID - Use ResourceToActualltem instead.

GetXOPSubMenuID - Use ResourceToActualMenulID instead.

GetXOPSubMenu - Use ResourceMenulIDToMenuHandle instead.
EnableXOPMenultem - Use EnableMenultem instead.

SetXOPItem - Use SetMenultemText instead.

DisposeXOPSubMenu - There is no need to dispose XOP submenus anymore.

Here is code that uses EnableMenultem to enable a menu item added by an XOP to a built-in Igor
menu. In this case, the item was added to Igor's Load Waves submenu by thefirst entry in the
XOP's XMI1 resource.

int itemNumber = ResourceToActualItem(LOAD SUB ID, 1);
MenuHandle mH = GetMenuHandle (LOAD SUB_1ID) ;
if (mH != NULL)

EnableMenultem (mH, itemNumber) ;

Old XOPs that use the STR#,1101 method for adding a menu item will continue to work under
Mac OS 9.

Dialogs Under Carbon

Long ago, the Mac OS provided a set of Dialog Manager callsthat you could call to manipulate
dialog items. Then Apple introduced new capabilities implemented by a part of the OS called the
Appearance Manager. The method for manipulating adialog item (e.g., setting the text of an
EditText field) depends on whether you use Appearance Manager features or not. All modern
code uses Appearance Manager techniques.

To avoid the need to support two ways of doing the same thing, the Carbon XOP Toolkit dialog
support routines assume that the dialog is Appearance-Manager savvy. Y ou make your dialog
Appearance savvy by:

Including adligx resource with the same resource ID as your DLOG resource.

Including the kDialogFlagsUseControl Hierarchy bit in the dlgx resource.

Using Appearance Manager programming techniques for implementing your dialog. If your
dialog is based on WaveMetrics examples, alarge part of thisis converting Userltem itemsto
Control items, as discussed below.

The GBLoadWave X OP illustrates these points.

531

532

Appendix B - Porting Macintosh XOPs to Carbon

GBLoadWave.r includes the digx resource. Including the kDial ogFlagsUseControlHierarchy bit
in the digx resource causes the Mac OS to create a control handle for each item in your dialog, if
the item is not aready defined asa CNTL item. All Userltem controls, mostly popup menus,
group boxes, underlines, and command boxes have been converted to Control items. The order
of items involving group boxes has been changed.

Mogt, if not all of the Appearance Manager code changes needed for normal Igor-like dialogs are
implemented in the XOP Toolkit dialog support routines. If you want to go beyond this, you need
to learn about the Mac OS Dialog Manager, Control Manager and Appearance Manager. Y ou will
also no doubt need to study Apple's sample code. Making sense of Apple's documentation and
sample code is a challenge.

Moveable Dialog Box

Y ou can change your dialog from immovable to movable by changing dBoxProc to
movableDBoxProc in your DLOG resource.

Default and Cancel Dialog Items

If you use the DoXOPDialog routine, you should add the following lines after the GetX OPDialog
cal:

SetDialogDefaultItem(theDialog, <Your default item numbers) ;
SetDialogCancellItem(theDialog, <Your cancel item numbers>) ;
SetDialogTracksCursor (theDialog, 1) ;

DoXOPDialog now calls a standard Mac OS dialog filter routine that handles hits on the default
and cancel items and sets the cursor. These calls|et the standard Mac OS dia og filter routine
know what to do.

Macintosh Dialogs With Popup Menus

This section is of interest only if you have a pre-Carbon XOP that uses X OP Toolkit dialog popup
menus.

Prior to Carbon, the XOP Toolkit implemented dialog popup menus using WaveMetrics
homebrew code. This code did not fit in well with Carbon and especially with the Mac OS X
Aqualook and feel. It al'so would have been difficult to port to Carbon. Consequently, we now
use the standard Carbon methods for implementing popup menus, which means that you need to
modify your code.

Most of the changes are buried inside X OPSupport routines, and you don't need to worry about
them. However, there are a few things that you must do to make your XOP work with the new
popup menu implementation.

Appendix B - Porting Macintosh XOPs to Carbon

In the old method, the popup menu dialog item was declared in the DITL resource as a Userltem.
In the new method, the item must be a Control item. This Control item refersto aCNTL resource

which you must also include in your resource fork.

Here isthe old definition of the Path popup menu item in the GBL oadWave dial og:

resource 'DITL' (1260) { /* Main dialog */

{

/* [13] */
{127, 55, 146, 173},
UserItem ({
enabled
1

Hereiswhat it looks after carbonization:

resource 'CNTL' (1100, "Path Popup Menu", purgeable) {
{127, 55, 146, 173},

0, // Title constant.
visible,
0, // Width of title in pixels.
-12345, // MENU resource ID; MUST BE -12345!
kControlPopupButtonProc | kControlPopupFixedWidthVariant,
0, // Refcon
nn // Title
}i
resource 'DITL' (1260) { /* Main dialog */
{
/* [13] */
{127, 55, 146, 173},
Control {
enabled,
1100

b

// CDEF ID

S0, to convert your old XOP to use the new popup menu methods, you need to change your

Userltem item into a Control item and add a corresponding CNTL resource.

533

Appendix B - Porting Macintosh XOPs to Carbon

534

Your CNTL resources should use resource IDs in the range 1100 to 1199.

Make sure that the bounds rectangle in the CNTL resource matches the bounds rectangle for the
corresponding dialog item in the DITL resource.

The CNTL resource fields are nominally called initial value, visibility, maximum value and
minimum value. However, when used for a popup menu, they really mean something else. The
initial value field really stores something called the "title constant”. The maximum field really
stores the width of thetitle in pixels. We use O for these because we create an explicit title item.
The minimum field really storesa MENU resource ID. This kludge is more or less explained in
Apple's Control Manager documentation.

Y ou must specify -12345 as the MENU resource ID. This prevents the Mac OS Control Manager
from attempting to create a menu from aresource. The menu is created when you call the
CreatePopMenu X OPSupport routine and is disposed when you call DisposeX OPDia og.

Make sure to set the bounds field of the CNTL resource to the same coordinates as the
corresponding iteminthe DITL.

Other Controls In Dialogs

Some other dialog items previously implemented as Userltems should be converted to controls
under Carbon.

Igor command boxes in dialogs that generate commands should be converted to group box
(kControlGroupBoxTextTitleProc) controls.

Group boxes should be converted to group box (kControl GroupBoxTextTitleProc) controls.
Underlines should be converted to separator (kControl SeparatorLineProc) controls.

These are dl illustrated in the GBLoadWave.r file. As with popup menu items, to convert a
Userltem to a control, you must add a CNTL resource and change the Userltem into a Control
item, which references the CNTL resource. Make sure to set the bounds field of the CNTL
resource to the same coordinates as the corresponding item in the DITL.

Pre-carbon, the group box Userltem appeared in the DITL after the items inside the group box.
With carbon, thisis reversed; the group box control must appear in the DITL before the items
inside the group box. Also, pre-Carbon, thetitle for the group box was a separate dialog item. In
Carbon, it is part of the group box item, so the separate title item must be removed.

Appendix B - Porting Macintosh XOPs to Carbon

Carbon API Versus Classic Mac API

If your existing XOP calls Macintosh OS routines, you will need to make changes so that it can
compile and run under Carbon. Y ou'll know this because you will get compile errors when you
try to compile using the Carbon headers.

The starting point for understanding the necessary changesis Apple's " Carbon Porting Guide”,
which isincluded with the Carbon SDK. To get you started, hereis abit of information about the
changes you may need to make.

In the classic Mac AP, you could directly reference fields in structures defined by the API. For
example, to find the font used by the a QuickDraw GrafPort, you could write:

int theFont = someGrafPort->txFont;

In Carbon, thisis not allowed. Y ou need to call an "accessor routine”, like this:

int theFont = GetPortTextFont (someGrafPort) ;

The names of some routines have been changed. Prior to Carbon, you could enable a menu item
like this:

EnableItem (menuH, itemNumber) ;

In Carbon, the Enableltem routine no longer exists. Y ou need to use EnableMenultem instead.
(But the XOP Toolkit defines Enableltem on both Macintosh and Windows because it is part of a
cross-platform set of routines that pre-date Carbon.)

The classic Mac API included routine that accepted C strings as parameters. For example:

setitem(menuH, itemNumber, itemText) ;

whereitemText isa C (null-terminated) string.

In Carbon, setitem does not exist. Neither does its more modern cousin, setitemtext. Instead, you
need to use SetMenultemText, which takes a Pascal string, not a C string. So you need to write:

unsigned char pItemText [256];
CopyCStringToPascal (itemText, pItemText) ;
SetMenultemText (menuH, itemNumber, pIltemText) ;

Some of these changes are documented in Apple's " Carbon Porting Guide". The Carbon header
files also sometimes provide the necessary information. Sometimes you can find the information
at Apple's Carbon documentation web site:

http://developer.apple.com/techpubs/macosx/Carbon/

535

536

Appendix B - Porting Macintosh XOPs to Carbon

Sometimes you have to search the Carbon mailing list archives:

http://lists.apple.com/mailman/listinfo/carbon-development

And sometimes you are just plain out-of-luck.

Accessing Resources

This section discusses a problem that does not affect most XOPs. It does affect XOPs that directly
or indirectly (through system or library calls) access resources.

Prior to Carbon, Igor did some sleight-of-hand to make sure that the resourcesin all XOPs were
hidden from Igor and from all other XOPs. This trick was necessary because, way back in the
days of 68K processors, the operating system could mistakenly load a CODE resource from an
XOP when it should have loaded a CODE resource from Igor or from a different XOP. The trick
involved setting alow-memory globa which controlled the chain of resource files visible to the
Resource Manager.

With Carbon, the trick is no longer feasible. In Igor Pro Carbon, all XOP resource forks are now
visible to the Resource Manager all of the time. This has the potential to cause problems.

Before Igor sends a message to your XOP's X OPENtry routine, it sets the current resource fork to
your XOP's resource fork. However, for speed reasons, it does not do this when calling a direct
external function. Also, you may use Macintosh programming techniques, such as Carbon Events,
which result in your code being called by the operating system, not by Igor. In this case, you can
not be sure what resource fork is current. This means that you must take greater care when
accessing resources to make sure that you access only your own resources. Here are guidelines
for doing this:

1. Before calling any function that directly or indirectly accesses resources, call UseResFileto
make sure that the file in which the resource resides is the current resource file. When you are
finished, set the current resource file back to what it was. For example:

int saveResFile = CurResFile () ;

UseResFile (XOPRefNum()) ; // Set current to XOP resource fork.
<Access resources>

UseResFile (saveResFile) ;

2. Don't cal routines that search multiple resource forks. For example, use Get1Resource, not
GetResource. Use GetlNamedResource, not GetNamedResource.

3. There are some Mac OS routines which do not give you the option of restricting the search to
one resource fork. These include GetMenu and GetlndString. This does not cause a problem
if you set the current resource fork before calling these routines and if the resource is found.

Appendix B - Porting Macintosh XOPs to Carbon

However, if the resource is absent from the resource fork that you intend to search, these
routines might find the resource in another resource fork.

It is possible to add a test to make sure that the resource you are trying to accessisin the current
resource fork. The GetX OPIndString X OPSupport routine does such atest. Y ou should use
GetX OPIndString instead of GetlndString. However, GetX OPIndString takes a pointer to an
array of char and returns a C string while GetlndString takes a pointer to unsigned char and
returns a Pascal string. Therefore changing from GetlndString to GetX OPIndString will require
some additional work.

Prior to Carbon, the XOP Toolkit provided routines named X OPOpenResFile, XOPUseResFile
and X OPCloseResFile which allowed you to open other resource files without interfering with
Igor's resource hiding trick. These routines are not supported in the Carbon XOP Toolkit. If you
use them, replace them with calls to OpenResFile, UseResFile and CloseResFile, and be aware of
the issues discussed above in this section.

Normally, a pre-Carbon X OP can run with the Carbon version of Igor on Mac OS 9. If apre-
Carbon X OP relies on XOPOpenResFile, XOPUseResFile and XOPCloseResFile, it may or may
not need to be rewritten. These routines were supplied by the XOPSupport library and did not do
acalback to Igor, so it is possible that old XOPs that use them will still work with Carbon Igor.
Y ou need to try such XOPsto find out.

Other Issues

Igor Pro Carbon includes a floating help window. Thisis used to replace Appl€'s balloon help
system, which is not supported under Carbon or Mac OS X. Because the window is floating, if it
isdisplayed, any call to FrontWindow will return the WindowRef for the floating help window.
Therefore, if your XOP calls FrontWindow, you must change thisto call
FrontNonFloatingWindow.

Changes That Affect Windows XOPs

The BoxItem XOPSupport routine has been removed. Thiswas aNOP. If you useit in your XOP,
you can just deleteit.

The GetStandardFilePath and SetStandardFilePath routines have been removed.

537

Appendix B - Porting Macintosh XOPs to Carbon

538

Appendix C

XOP Toolkit 5 Release History

OVEIVIBIW ...ttt be st st et e e e seenesbesaentenee e eneenens 541
Operation Starter Code Bug Inlgor Pro5.00 and 5.01.........cccecevvvvececeennene, 541
Release 5.00, March 23, 2004 ... 541
Release 5.03, September 13, 2004........cooeeeeerereriereeeeeee e eseeseenens 541
REIEASE 5.04..... et 542

539

Appendix C — XOP Toolkit 5 Release History

540

Appendix C — XOP Toolkit 5 Release History

Overview

XOP Toolkit version numbers are chosen to roughly coincide with the version of Igor Pro
shipping at the time of the XOP Toolkit release. Thus, there is an XOP Toolkit 5.00 and an XOP
Toolkit 5.03 but no 5.01 or 5.02.

Operation Starter Code Bug In Igor Pro 5.00 and 5.01

Igor Pro 5.00 and 5.01 had a bug in the automatic code generation for external operations. This
bug is mostly asymptomatic because the recommended project settings force two-byte structure
alignment but you should still fix it. Search your XOP source code and replace any occurrence of:
#pragma XOP SET STRUCT PACKING
with
#include "XOPStructureAlignmentTwoByte.h"

Also replace any occurrence of:
#pragma XOP RESET STRUCT PACKING
with
#include "XOPStructureAlignmentReset.h"

Now verify that each #include "X OPStructureAlignmentTwoByte.h" is balanced by a
corresponding #include "X OPStructureAlignmentReset.h".

Release 5.00, March 23, 2004

Initial release.

Release 5.03, September 13, 2004

Added this routine to make it easier to call routines that expect Posix paths on Mac OS X:
HFSToPosixPath

Added the ability to pass an Igor Pro structure to an external operation. See Structure
Par ameter s on page 168. This feature requires Igor Pro 5.03 or later.

Added the ability to pass an Igor Pro structure to an external function. See Structure Parameters
on page 194. Thisfeature requires Igor Pro 5.03 or later.

541

542

Appendix C — XOP Toolkit 5 Release History

Added the following X OPSupport routines, which require Igor Pro 5.03 or later, to allow an
external function to use NVAR and SVAR fieldsin Igor Pro structures:

GetNVAR
SetNVAR
GetSVAR

SetSVAR

Release 5.04
Added the GetL eafName utility routine. This routine returns the leaf part of afile path.

Changed the allowable values for the full FilePath parameter to the X OPOpenfileDialog and
XOPSaveFileDialog routines. Previously these parameters were required to be either "" or just a
file name. Now they can also be afull file path.

The reason for this change is that the sample XOPs incorrectly passed afull file path for this
parameter. On Macintosh this was asymptomatic but on Windows it caused the wrong folder to
beinitially displayed in the Open File or Save File dialog when you executed, for example,
SimpleL oadWave/P=<path>. The change to XOPOpenFileDiaog and XOPSaveFileDialog
makes acceptable the previously incorrect parameter, thus fixing the problem without requiring
source code changes to all XOPs modeled on Simplel oadWave. They still need to be relinked
with the new XOPSupport library to get the benefit of this bug fix.

Added the GetTextWaveData and SetTextWaveData X OPSupport routines. GetTextWaveData
allowsyou to get all of the datafor an entire text wave in one call. SetTextWaveData allows you
to set al of the datafor an entire text wave in one call. These routines require Igor Pro 5.04 or
later.

Added the GetWaveDimensionL abels and SetWaveDimensionL abel sX OPSupport routines.
GetWaveDimensionL abels allows you to get al of the dimension labels for awave in one call.
SetTextWaveData allows you to al of the dimension labels for awave in one call. These routines
require Igor Pro 5.04 or later.

Fixed abug in MDGetWaveScaling. Previoudly it could return incorrect data full scale valuesin
rare cases.

Added the SetOperationWaveRef X OPSupport routine. If you use a DataFolderAndName
parameter in an external operation to specify a destination wave, you should add acall to

Appendix C — XOP Toolkit 5 Release History

SetOperationWaveRef to your ExecuteOperation function. See the documentation for
SetOperationWaveRef for details. Thisrequires Igor Pro 5.04 or later.

Using Igor Pro 5.04 or later, you can use the CheckFunctionForm and CallFunction X OPSupport
routines to call a user-defined or external function that takes a structure parameter.

Added the MDChangeWave2 X OPSupport routine for redimensioning a wave without changing
itsdata. Thisrequires Igor Pro 5.04 or later.

Added the ISINF32 and I1sINF64 X OPSupport routines. These routines work with any version of
Igor.

Added the ScaleClipAndRound XOPSupport routine. Thisworks with any version of Igor.

Added the extended form of structure parameter for external operations. Thisrequires Igor Pro
5.04 or later. See Extended Structure Parameterson page 172.

543

Appendix C — XOP Toolkit 5 Release History

.cfiles, 15
.dsp files, 90
.dsw files, 90
.exp files
CodeWarrior, 77
Xcode, 81, 84
.igr extension, 292
.ihf extension, 292
.NET, 94-98
Visual C++ 7,94
.plcfiles, 75
rfiles, 15
compiled by Rez, 109
rcfiles, 15, 109
Visua C++ 6,91
Visual C++ 7, 96
rsrcfiles
in packages, 109
sinfiles, 95
.veproj files, 95
.Xop extension, 7, 20, 105

__initialize, 40, 72, 101
__terminate, 40, 72, 101

A

aborting
CheckAbort, 482
About Igor dialog, 26
access paths
CodeWarrior, 70

accessing datafolders, 376-91

accessing variables, 368-75
accessing waves, 336-65
ACTIVATE message, 116

not sent on Windows, 253

Activity Monitor
leaks, 310

Actual ToResourceltem, 241, 394
Actua ToResourceMenul D, 240, 393

adding commands, 146-78

adding dialogs, 26976
adding functions, 181-204
adding menus and menu items, 231-46
adding operations, 14678
adding windows, 249-58
AddPopMenultems, 406
Adobe Acrobat, 10
afxres.h, 89
aerts
custom error aert, 131
XOPOKAIert, 495
XOPOK CancelAlert, 495
XOPY esNoAlert, 495
XOPY esNoCancelAlert, 496
aliases, 20
alignment. (see structure alignment)
ALRT resources, 518
Appearance Manager, 531
appendmenu, 502, 530
ArrowCursor, 434
as keyword, 155
Asian text
ConcatenatePaths, 414
FullPathPointsToFile, 415
FullPathPointsToFolder, 416

Index

GetDirectoryAndFileNameFromFullPath, 415

GetNativePath, 413

HFSToPosixPath, 412

MacToWinPath, 411

strchr2, 492

strrchr2, 492

WinToMacPath, 412
AtEndOfCommand, 335

B

background processing
SpinProcess, 484

balloon help, 295
for menu items, 296
Igor Tips, 295
STR# resources, 296
WindowXOP1 XOP example, 296
Xcode, 88

big-endian
MDChangeWave2, 349

BoxItem, 529

o 303-17

bundles

Index

Xcode, 82
byte order
MDChangeWave2, 349
byte reordering
settings, 134

C

C strings, 193, 220
C++
catch, 100
CodeWarrior, 101
exceptions, 100
mixing with C, 99
new operator, 101
templates, 214
try, 100
type coercion, 99
Visua C++, 102
WaveData, 99
writing XOPsin, 99
Xcode, 84, 102
CalcWaveRange, 165, 335
callbacks, 16, 21
IGOR.lib, 16
CallFunction, 285, 471
cancel button, 532
Cancel button, 277
cancelling
CheckAbort, 482
Capitalize, 335
Carbon
API changes, 535
balloon help, 295
dialogs, 531
FrontWindow, 537
history, 5
Igor Pro versions, 9
issues, 522
paths, 268
popup menus, 532
porting XOP to, 521
resources, 536
Userltem controls, 533, 534
XOP Toolkit 5,5
catch, 100
categories
for functions, 185
of operations, 149
CatPossiblyQuotedName, 460
CFM, 6
creating projects in CodeWarrior, 67

resources, 109
ChangeWave, 338
chart displays, 448-49
CheckAbort, 482
CheckFunctionForm, 285, 469
Checkltem, 504, 530
CheckName, 457
CheckTerm, 335
child datafolder, 381
CHUNKS, 216, 336, 360
CLEANUP message, 113
CleanupName, 457
CLEAR message, 121
CLEAR_MODIFIED message, 124, 133
CLICK message, 118
not sent on Windows, 253
CLOSE message, 117
close type code for windows, 117
clut resources, 518
CMD message, 115
error codes, 127
CmpStr, 492
CNTL resources, 275, 533
Code Fragment Manager, 6
CodeWarrior, 66—78
.expfiles, 77
.mcp files, 68
.plcfiles, 75
__initialize, 40
__terminate, 40
access paths, 70
building SimpleFit, 30
C++, 101
CFM, 67
creating anew CFM project, 67
creating a new Mach project, 75
creating project in guided tour, 36
debugging a Macintosh XOP, 73, 78
entry points, 72
first XOP support, 4
frameworks, 75
GDB, 73
10Kit, 75
IXOP XOP file type, 39, 76
Mach-O, 75
MetroNub, 73, 78
NEWMODE, 101
prefix file, 71, 76
project files, 68
project settings, 69
shared library, 68
structure alignment, 280
supported versions, 8, 65

Index

target settings, 69
TARGET_RT_MAC_MACHO, 77
testing installation, 11
versus Xcode, 6
XOPSupport project files, 13
colons, 267, 268
color tables
GetlgorColorTablelnfo, 462
GetlgorColorTableValues, 462
GetlndexedlgorColorTableName, 461
GetNamedlgorColorTableHandle, 461
routines, 461-63
COLUMNS, 216, 336, 360
command template, 152
command templates, 155
length limit, 175
mnemonic names, 158
commands
adding, 146-78
parsing, 335
PauseUpdate, 478
PutCmdLine, 485
ResumeUpdate, 478
XOPCommand, 476
XOPCommand2, 476
XOPSilentCommand, 477
commas
in operations, 146
communicating with Igor, 326-28
compatibility, 4, 140-42
external operations, 177
Igor 1.2, 141
Igor Pro, 141
of XOPswith Igor versions, 6
operations, 147
resources, 518
XOP Toolkit 5, 507
XOPI resource, 111
compilableOp operation category, 148, 149
compiling
help files, 292
complex conjugate
example external function, 182
complex conjugate example, 189
complex numbers
external function example, 182
parametersin externa functions, 189
resultsin external functions, 189
storage in waves, 216
ConcatenatePaths, 414
configurations
Visua C++ 6,91
Visua C++ 7,96

content region, 255, 256
context-sensitive help
for dialogs, 300
ConvertData, 451
ConvertData2, 452
COPY message, 121
CountMItems, 502, 530
crash logs, 319
CreatePopMenu, 245, 275, 405, 526
CreateValidDataObjectName, 458
CreateWindowEx, 251
CreateX OPWindow, 252
CreateX OPWindowClass, 252
cross-platform development, 266
diadogs, 270-76
files, 267
Macintosh emulation, 497
current data folder, 379
Ccursors
ArrowCursor, 434
HandCursor, 434
|BeamCursor, 434
Setting, 118
setting in NULLEVENT, 118
setting on Macintosh, 250
SpinCursor, 434
WatchCursor, 434
curvefitting
SimpleFit sample XOP, 18, 29
SimpleGaussFit sample XOP, 29
WAVE_TYPE, 189
custom errors
adding, 130
CUT message, 120

D

dangling pointers, 312

datafolders, 224-28
accessing, 376-91
child, 381
commonly used X OPSupport routines, 224
conventions, 227
current, 379
DuplicateDataFolder, 383
DuplicateDataFol derObject, 389
FetchWaveFromDataFolder, 339
GetCurrentDataFolder, 379
GetDataFolder, 335
GetDataFolderAndName, 335
GetDataFolderByl DNumber, 380
GetDataFolderl DNumber, 377

547

Index

cononreny ST
GetDataFolderNameOrPath, 376
GetDataFolderObject, 385
GetDataFolderProperties, 377
GetlndexedChildDataFol der, 381
GetlndexedDataFolderObject, 384
GetNamedDataFol der, 379
GetNumChildDataFolders, 381
GetNumbDataFol dersObjects, 384
GetParentDataFolder, 381
GetRootDataFolder, 379
GetWavesDataFolder, 381
1D numbers, 377, 380
KillDataFolder, 382
KillDataFolderObject, 389
oy ST
MoveDataFolder, 383
MoveDataFolderObject, 390
NewDataFolder, 382
Packages data folder, 227
parent, 381
RenameDatalFol der, 383
RenameDataFol derObject, 391
root, 379
SetCurrentDataFolder, 379
SetDataFolderObject, 387
SetDataFol derProperties, 377
variables, 368
waves, 381
datafull-scale, 341
MDGetWaveScaling, 349, 542
MDSetWaveScaling, 350
data sharing, 139
DATAFOLDER_OBJECT, 376-91
CheckName, 457
CreateValidDataObjectName, 458
DataFolderAndName parameters
external operations, 166
DataFolderHandles, 224
DataObjectVauePtr
GetDataFolderObject, 385
SetDataFolderObject, 387
dates, 494
DateTolgorDatel nSeconds, 494
dBoxProc, 532
debug configuration
Visual C++ 6, 91
Visual C++ 7, 96
debugging, 318-20
crash logs, 319
Dr. Watson, 320
in CodeWarrior, 73, 78
inVisual C++ 6, 93

inVisual C++ 7,98
in Xcode, 86
LaunchCFMApp, 86
MacsBug, 319
MetroNub, 73, 78
symbolic debugging, 318
XOPNotice, 319
default button, 532
default help file name, 293
DefaultMenus, 530
DeleteMenultem, 502
DeleteMenultems, 525
DeletePopMenultems, 407
dereferencing ahandle, 313
dereferencing handles, 263, 264
destination waves, 166
DestroyX OPWindow, 252
DEV_SYS CODE, 111
Xcode, 84
development system, 111
supported systems, 65
development systems
supported systems, 8
dialogs, 398410
adding, 269-76
AddPopM enultems, 406
cancel button, 532
Cancel button, 277
Carbon, 531
context-sensitive help, 300
CreatePopMenu, 405
DeletePopMenultems, 407
DialogStorage structure, 272
DisableDControl, 401
DisplayDialogCmd, 277, 404
DisposeDialogStorage, 272
DisposeX OPDialog, 399
digx resources, 270
DLOG and DITL resources, 269
Do It button, 277
DoXOPDialog, 398
EnableDControl, 401
FillPathPopMenu, 409
FillPopMenu, 408
FillWavePopMenu, 408
FillWindowPopMenu, 409
FinishDialogCmd, 277, 404
GetCheckBox, 400
GetDBox, 399
GetDDouble, 403
GetDInt, 402
GetDLong, 402
GetDText, 401

Index

GetPopMenu, 407

GetPopMenuHandle, 406

GetRadBut, 400

GetXOPDidog, 398

HandleltemHit, 272

help, 300

Help button, 277

HiliteDControl, 401

Igor style, 276

IgorError, 483

InitDial ogSettings, 272

InitDialogStorage, 272

InitPopMenus, 405

ItemlsPopMenu, 406

kDial ogFlagsUseControlHierarchy, 270

KillPopMenus, 410

on Macintosh, 270

on Windows, 270

popup menus, 245, 275, 277

resources, 269

SelEditltem, 403

SelMacEditltem, 403

SetCheckBox, 400

SetDDouble, 403

SetDiaogBalloonHelpl D, 399

SetDialogPort, 398

SetDInt, 402

SetDLong, 402

SetDText, 401

SetPopltem, 407

SetPopMatch, 407

SetRadBut, 400

ShowDia ogWindow, 398

ShutdownDialogSettings, 272

To Clip button, 277

To Cmd button, 277

ToggleCheckBox, 400

Userltem controls, 533, 534

XOP_WINDOW_REF, 270

XOPDialog, 399

XOPDisplayHelpTopic, 486

XOPOpenFileDialog, 421

XOPSaveFileDialog, 423
DialogStorage structure, 272
dimension labels

GetWaveDimensionL abels, 353, 542

MDGetDimensionL abel, 352

MDSetDimensionL abel, 353

SetWaveDimensionL abels, 354, 542
dimension scaling

for waves, 218

MDGetWaveScaling, 349

MDSetWaveScaling, 350

dimensions
MDChangeWave, 348
MDChangeWave2, 349
MDGetWaveDimensions, 347
MDMakeWave, 346
ROWS, COLUMNS, LAY ERS, CHUNKS, 216, 336
direct access method, 214
direct functions, 201
direct method for external functions, 201-2
directory 1Ds, 267
DisableDControl, 401
Disableltem, 503, 530
disabling menu items, 242-44
DisplayDialogCmd, 277, 404
DISPLAY SELECTION message, 122
DisposeDialogStorage, 272
DisposeHandle, 499
DisposeMenu, 245
DisposePtr, 498
DisposeWindow, 250
DisposeX OPDialog, 399
DisposeX OPSubMenu, 530
DITL resources, 269
digx resources, 270, 531
DLOG resources, 269, 518
Do It button, 277
DoCHIO, 483
DoFunction routine, 201
DOITID, 404
DOUBLE, 518
DoUpdate, 478
recursion, 137
DoWindowRecreationDial og, 466
DoXOPDialog, 398
Dr. Watson, 320
DUPLICATE message, 122
DuplicateDataFolder, 383
DuplicateDataFolderObject, 389

E

Editltem, 527
email, 26
EnableDControl, 401
Enableltem, 503, 530
EnableX OPMenultem, 529
enabling menu items, 24244
endian

MDChangeWave2, 349
entry points

CodeWarrior, 72
error codes

549

Index

from operations, 147 complex results, 189
errors, 127-31 direct functions, 201
custom error alert, 131 direct method, 201-2
custom errors, 130 DoFunction routine, 201
custom XOP error codes, 128 error codes, 187, 202
error codes, 127 examples, 182
external functions, 187 FUNCADDRS message, 114, 201-2
FIRST_XOP_ERR, 130 function categories, 185
GetlgorErrorMessage, 127, 131, 483 FUNCTION message, 115, 201-2
GetL astError, 128-30 FV_REF_TYPE, 199
Igor error codes, 127 guided tour, 29
IgorError, 127, 131, 483 invoking from Igor, 186
in external functions, 202 keep RESIDENT, 201
Mac OS error codes, 128 logfit example, 202
STR# 1100 resource, 130 message method, 201-2
Windows OS error codes, 128-30 names of, 183, 186
WindowsErrorTolgorError, 128-30, 473, 474 parameter types, 183, 188
WM GetL astError, 128-30 parameters, 181, 187
XOPOKAIert, 131 pass-by-reference, 198
XOPOK CancelAlert, 131 pass-by-value, 198
XOPYesNoAlert, 131 result types, 183, 188
XOPY esNoCancelAlert, 131 returning results, 187
exceptions SimpleFit sample XOP, 18
in C++, 100 string parameters, 190, 191, 193, 199
ExecuteOperation, 152 string results, 190, 191
NULL handles, 175 structure alignment, 187
EXP_xxx, 125, 126 structure parameter example, 196
experiment type argument, 125, 126 structure parameters, 194, 195
experiments, 124-26, 132-34 versus user functions, 181
CLEAR_MODIFIED message, 124 wave assignment statements, 186
EXP_xxx, 125, 126 wave parameters, 204
LOAD message, 124 WaveA ccess sample XOP, 19
LOAD_TYPE_xxx, 126 XFUNC1 sample XOP, 17
loading settings, 133 XFUNC2 sample XOP, 17
LOADSETTINGS message, 126 XFUNC3 sample XOP, 17
MODIFIED message, 124 external operations, 146-78
NEW message, 124 as keyword, 155
SAVE message, 124 command template, 152
SAVE_TYPE_ xxx, 125 command templates, 155
SAVESETTINGS message, 125 compatibility, 177
saving settings, 133 compatibility with Igor Pro 4, 147
EXPORT_GRAPHICS message, 122 compilableOp, 148
Exports.exp file, 43 compilableOp operation category, 149
extended structure parameters, 172 DataFolderAndName parameters, 166
examplein external operation, 173 extended structure parameter example, 173
extensions extended structure parameters, 172
help files, 292 flags, 146, 154
extern declaration GBLoadWave sample XOP, 18
mixing C and C++, 99 keywords, 154
external functions, 181-204 MenuXOP1 sample XOP, 18
adding, 182 mnemonic names, 158
calling from an XOP, 285 name parameters, 163
complex parameters, 189 names of, 150

550

Index

NIGPIB2 sample XOP, 19
NVARs, 177

Operation Handler, 151-78
Operation Handler XOPSupport routines, 329
optional parameters, 157, 162
output variables, 174

parameters, 146, 154
RegisterOperation, 329

runtime parameter structure, 159
Simplel oadWave sample XOP, 18
starter code, 152

starter code bug, 541

string parameters, 163

structure parameter example, 169
structure parameters, 168
template, 152

templates, 155

TUDemo sample XOP, 19
variables, 330, 331, 332, 333, 428
VarName parameters, 165

VDT2 sample XOP, 19

wave parameters, 164

wave references, 333
WaveRange parameters, 164
WindowXOP1 sample XOP, 17
XOP1 sample XOP, 17

XOPOp operation category, 149

F

F_EXTERNAL function category, 185
FetchNumericValue, 362
FetchNumVar, 369
example, 223
FetchStrHandle, 370
FetchStrvar, 370
example, 223
FetchWave, 338
FetchWaveFromDataFolder, 339
fields
of structure parameters, 282
FIFOs, 44849
GetNamedFI FO, 449
MarkFIFOUpdated, 449
NamedFIFO.h, 448
SoundInput XOP, 448
file loaders
FileL oaderGetOperationFlags, 335
FileL oaderGetOperationFlags2, 335
FileL oaderMakeWave, 427
GBLoadWave sample XOP, 18

GetFull PathFromSymbolicPathAndFilePath, 426

Load Waves submenu, 18
output variables, 174
SanitizeWaveName, 456
SetFilel oaderOperationOutputVariables, 428
SetFilel oaderOutputVariables, 174, 428
SetOperationFilel oaderOutputVariables, 174
SimpleL oadWave sample XOP, 18
support routines, 426-29
XOPOpenFileDidog, 421
XOPSaveFileDialog, 423
FILE_LOADER flags, 335, 427
FileFullySpecified, 528
FileL oaderGetOperationFlags, 335, 526
FileL oaderGetOperationFlags2, 335
FileLoaderMakeWave, 427
files
accessing, 411-25
ConcatenatePaths, 414
cross-platform routines, 267
directory 1Ds, 267
FullPathPointsToFile, 415
FullPathPointsToFol der, 416
GetDirectoryAndFileNameFromFullPath, 415
GetFullMacPathToDirectory, 416
GetLeafName, 416
GetNativePath, 413
HFSToPosixPath, 412
MacToWinPath, 411
MAX_DIRNAME_LEN, 267
MAX_FILENAME_LEN, 267
MAX_PATH_LEN, 267
MAX_VOLUMENAME_LEN, 267
path conversions, 268
path separator characters, 267
platform independence, 18
TUSFInsertFile, 441
TUSFWriteFile, 441
volume reference numbers, 267
WinToMacPath, 412
working directory refNums, 267
XOPAtEndOfFile, 420
XOPCloseFile, 418
XOPCreateFile, 417
XOPDeleteFile, 417
X OPGetFilePosition, 420
XOPNumberOfByteslnFile, 420
XOPOpenFile, 417
XOPReadFile, 418
XOPReadFile2, 418
XOPReadLine, 419
X OPSetFilePosition, 420
XOPWriteFile, 419
FillMenu, 394

Index

552

FillMenuNoMeta, 395
FillPathMenu, 396
FillPathPopMenu, 409
FillPopMenu, 408
FillWaveMenu, 395
FillWavePopMenu, 408
FillWindowPopM enu, 409
FillWinMenu, 396
find
menu item, 243, 392
TUFind, 440
FIND message, 121, 243
FinishDialogCmd, 277, 404
FIRST_IGOR5_ERR, 127
FIRST_XOP_ERR, 128, 130
FIRSTCMD, 485
FIRSTCMDCRHIT, 485
FixByteOrder, 454
flags, 146, 154
optional parameters, 157
prefix characters, 155
fopen function
Xcode, 88
forward slashes, 267, 268
frameworks
CodeWarrior, 75
Xcode, 83
FrontWindow, 525, 537
FTP, 8, 26
XOP Toolkit updates, 65
full size position message, 119
FullPathPointsToFile, 415
FullPathPointsToFolder, 416
FUNCADDRS message, 114, 201-2
FUNCREFs
in structure parameters, 282
using from an XOP, 285
function categories, 185
F_EXTERNAL, 185
function index, 115, 201
FUNCTION message, 115, 201-2
error codes, 127
functions. (see also external functions)
adding, 181-204
CallFunction, 285
calling from an XOP, 285
characteristics of, 3
CheckFunctionForm, 285, 469
GetFunctioninfo, 285, 467, 471

GetFunctionlnfoFromFuncRef, 285, 468

FV_REF _TYPE, 199
in XOPF resource, 184
FV_STRUCT_TYPE, 195

in XOPF resource, 184

G

GBLoadWave sample XOP, 18
GBLoadWave XOP

Igor-style dialog, 276
GDB, 73
GENERATINGPOWERPC, 524
GET_TARGET_WINDOW_NAME message, 123
GET_TARGET_WINDOW_REF message, 123
GetA4, 527
GetActiveWindowRef, 430, 525
GetAString, 335
GetAStringlnHandle, 335
GetCheckBox, 400
GetCStringFromHandle, 217, 220, 491
GetCurrentDataFolder, 379
GetDataFolder, 335
GetDataFolderAndName, 335
GetDataFolderByl DNumber, 380
GetDataFolderl DNumber, 377
concsnreny ST
GetDataFolderNameOrPath, 376
GetDataFolderObject, 385
GetDataFolderProperties, 377
GetDBox, 399
GetDDouble, 403
GetDInt, 402
GetDirectoryAndFileNameFromFullPath, 415
GetDLong, 402
GetDText, 401
GetFlag, 335
GetFlagNum, 335
GetFormat, 335
GetFullMacPathToDirectory, 416, 526
GetFull PathFromSymbolicPathAndFilePath, 426
GetFunctioninfo, 285, 467
GetFunctionl nfoFromFuncRef, 285, 468
GetHandleSize, 193, 220, 499

use with strings, 321
GetlgorColorTablelnfo, 462
GetlgorColorTableValues, 462
GetlgorErrorMessage, 127, 131, 483
GetlgorProcedure, 465
GetlgorProcedurel ist, 464
GetlndexedChildDataFol der, 381
GetlndexedDataFolderObject, 384
GetlndexedlgorColorTableName, 461
GetlndString, 537
GetKeyword, 335
GetL astError, 128-30

Index

GetLeafName, 416
GetLong, 335
GetMenu, 245
GetMenuHandle, 240
getmenuitemtext, 503, 530
GetName, 335
GetNamedDataFol der, 379
example, 227
GetNamedFIFO, 449
GetNamedlgorColorTableHandle, 461
GetNativePath, 268, 413
GetNewWindow, 250
GetNum, 335
GetNum2, 335
GetNumChildDataFolders, 381
GetNumDataFol dersObjects, 384
GetNumVarName, 335
GetNVAR, 374
example, 283
GetParentDataFolder, 381
GetPath, 335
GetPathinfo2, 481
GetPopMenu, 275, 407
GetPopMenuHandle, 406
GetPrefsState, 132, 490
GetPtrSize, 497
GetRadBut, 400
GetResource, 288, 536
GetRootDataFolder, 379
example, 227
GetStandardFilePath, 528
GetStrVarName, 335
GetSVAR, 375
example, 283
GetSymb, 335
GetSymbolicPath, 527
GetTextWaveData, 218, 365, 542
GetTrueOrFalseFlag, 335
GetV RefNumAndDirl DFromFull Path, 528
GetWave, 335
GetWaveDimensionL abels, 353, 542
GetWavel.ist, 335
GetWaveName, 335
GetWaveRange, 335
GetWavesDataFolder, 381
GetWavesinfo, 344
GetXOPDiaog, 398
GetX OPIndString, 447, 537
GetX OPItem, 107, 112, 328
itemsfield in IORecHandle, 136
pitfalls, 320
GetXOPItemID, 529
GetX OPMenulD, 529

GetX OPMessage, 107, 112, 327
message field in IORecHandle, 136
pitfalls, 320
GetX OPNamedResource, 447
GetX OPPrefsHandle, 132, 490
GetX OPRefCon, 328
GetX OPResource, 447
GetX OPResult, 327
GetX OPStatus, 241, 328
GetX OPSubMenu, 529
GetX OPSubMenulD, 529
GetX OPWindow, 250, 430
GetX OPWindowl gorPositionAndState, 433
GetX OPWindowPositionAndState, 431
global variables, 303
GPIB communications
NIGPIB2 sample XOP, 19
GRAF_MASK, 489
GROW message, 116
not sent on Windows, 253

H

HandAndHand, 499

HandCursor, 434

HandleltemHit, 272

handles, 139, 262, 261-65
containing strings, 321
dereferencing, 263, 264, 313
heap scramble, 312
locking, 264, 315
master pointers, 262
Movel ockHandle, 317
recommended practices, 317
treating as C strings, 193, 220
unlocking, 316
usage, 264

Handles
disposing, 163
GetCStringFromHandle, 217, 220
PutCstringlnHandle, 217, 220

HandToHand, 498

has68K HardwareFPU, 527

hasFPU, 527

hdlg resources
Mach-O, 295

header files, 13

heap, 262
fragmentation, 264
overwriting, 305

heap scramble testing, 317

heaps

553

Index

fragmentation, 315
heap scramble, 312
heap scramble testing, 317
help, 291-300
balloon help, 295
balloon help for menu items, 296
command help, 60
context-sensitive help, 300
example, 56
for dialogs and windows, 300
for operations and functions, 292-94
function categories, 185
help file name, 293
Igor Help Browser, 292
Igor Pro version, 34
operation categories, 149
searching for help files, 486
status line help, 297-99
technical support, 26
tips, 488
topics and subtopics, 486
XOPDisplayHelpTopic, 300, 486
X OPSetContextual HelpM essage, 488
Help Browser, 60
Help button, 277
indialogs, 277
help files
compiling, 292
extensions, 292
location of, 292
Xcode, 88
HFSToPosixPath, 412
HGetState, 500
HideAndDeactivateX OPWindow, 431
HiliteDControl, 401
history
XOPNotice, 478
XOPResNotice, 479
HLock, 264, 315, 500
HMNU resource
status line help, 297
hmnu resources
Mach-O, 295
HMNU resources
status line help, 297
HMODULE, 473
HSetState, 264, 316, 500
HSTRING_TYPE, 191, 199
in XOPF resource, 184
HUnlock, 264, 316, 500
HWND, 116
IgorClientHWND, 473
XOP_WINDOW_REFs, 249

|BeamCursor, 434
icon
Xcode, 85
1D numbers for datafolders, 377, 380
IDLE message, 112
IDLES hit, 112, 136
SetXOPType, 326
idling, 135
IEEE_FLOAT, 450
Igor 1.2
compatibility, 141
Igor 1., 4
lgor commands, 476, 477, 485
Igor Extensionsfolder, 4, 9, 20, 147, 182
Igor Help Browser, 292
Igor mailing list, 26
Igor number type codes, 450, 452, 453
Igor Pro
Carbon versus pre-Carbon, 9
compatibility, 141
first Windows version, 5
history, 4
Igor Extensions folder, 9
Igor Pro 2.0, 4
Igor Pro 3.0, 5
Igor Pro 3.1, 5
Igor Pro4, 5
Igor Pro 5 Windows compatibility, 5
Igor Pro 4
external operations, 147
pass-by-reference, 198
Igor Tips, 295
X OPSetContextual HelpM essage, 488
Igor version, 26
Igor window coordinates, 255
IGOR.lib
callback routines, 16
link with, 320
memory management routines, 261, 497
menu manager routines, 232
XOPSupport, 13
IGOR_OBSOLETE, 140, 141
IgorClientHWND, 473
IgorColorSpec, 462
IgorDatel nSecondsToDate, 494
IgorError, 127, 131, 483
IgorModule, 473
Igor-style dialogs, 276
lgorVersion, 486
igorVersion global, 140

Index

1gorXOP.h, 13
1gorXOPs5 folder
contents of, 13
creating, 10
IGRO XOPfile creator, 20, 105
Xcode, 84
INDENTLEFT message, 121
INDENTRIGHT message, 121
info.plist
Xcode, 83
INFs, 493
INIT message, 22, 112
error codes, 127
InitDialogSettings, 272
InitDialogStorage, 272
initialization, 20, 22, 112, 288, 326
InitPopMenus, 275, 405
INSERTCMD, 485
INSERTFILE message, 122
insertmenuitem, 502, 530
installing XOP Toolkit, 10
Intel, 5
Interface Builder, 109, 270
10Kit
CodeWarrior, 75
IORecHandle, 20, 105, 107, 135-36
passed to main, 24
recursion, 138
ISINF32, 493, 543
IsINF64, 493, 543
IsMacOSX, 488, 530
IsNaN32, 493
IsNaN64, 493
|sStringExpression, 335
1sXOPWindowActive, 430
ITEM_REQUIRES hits, 242
itemFlags field, 242
ItemlsPopMenu, 406
IXOP XOPfile type, 20, 39, 44, 76, 105
Xcode, 84

K

kDialogFlagsUseControlHierarchy, 270, 531
KEY message, 118
not sent on Windows, 253
Keyword, 335
keywords, 154
in operations, 146
optional parameters, 157
parsing, 335
prefix characters, 155

KillDataFolder, 382
KillDataFolderObject, 389
KillPopMenus, 275, 410

KillWave, 338

kMDWaveA ccessMode0, 214, 355

L

LaunchCFMApp, 86
Xcode, 83
LAYERS, 216, 336, 360
leaks, 310
Legendre polynomials, 17, 182
liberal names, 455
CatPossiblyQuoteName, 460
CleanupName, 457
CreateValidDataObjectName, 458
GetDataFolderAndName, 335
PossiblyQuoteName, 460
libraries
link errors, 320
XOPSupport, 13
linking
errors, 320
LITTLE_ENDIAN, 518
little-endian
MDChangeWave2, 349
LOAD message, 124, 132
L oad Waves submenu, 18
LOAD_TYPE_xxx, 126
loading settings, 133
LOADSETTINGS message, 126, 133
LoadX OPSegs, 524
lock state
waves, 340
locking handles, 264, 315
logfit
example external function, 17, 182, 202

M

Mac OS X
CFM versus Mach-O, 6
first Igor version, 5
Mach-O, 6
creating projectsin CodeWarrior, 75
creating projectsin Xcode, 80, 83
resources, 109
Macintosh
Igor Extensions folder, 9
supported OS versions, 5

555

Index

XOP Toolkit 5 requirements, 5
Macintosh emulation, 6
appendmenu, 502
Checkltem, 504
CountMItems, 502
DeleteMenultem, 502
Disableltem, 503
DisposeHandle, 499
DisposePtr, 498
Enableltem, 503
GetHandleSize, 499
getmenuitemtext, 503
GetPtrSize, 497
HandAndHand, 499
HandToHand, 498
HGetState, 500
HLock, 500
HSetState, 500
HUnlock, 500
insertmenuitem, 502
MemeError, 501
memory management, 139, 261
memory management routines, 497-501
menu management routines, 5024
MoveHHi, 501
NewHandle, 498
NewPtr, 497
PtrAndHand, 501
PtrToHand, 501
routines, 497-504
SetHandleSize, 499
setmenuitemtext, 503
SetPtrSize, 498
TickCount, 504
Macintosh menu manager routines, 232
MacRectToWinRect, 496
Macsbug
heap scramble testing, 317
MacsBug, 319
MacToWinPath, 268, 411
mailing list, 26
main, 21
receives INIT message, 112
receives IORecHandle, 24
version checking, 140
main function, 105
Xcode, 84, 102
MAIN_NAME_SPACE, 455
MakeWave, 337
MallocDebug
leaks, 310
MarkFIFOUpdated, 449
master pointers, 262

MAX_DIM_LABEL_CHARS, 352, 353, 354
MAX_DIRNAME_LEN, 267
MAX_FILENAME_LEN, 267
MAX_PATH_LEN, 267
MAX_UNIT_CHARS, 342, 351, 352
MAX_VOLUMENAME_LEN, 267
MDA ccessNumericWaveData, 214, 355
MDChangeWave, 348
MDChangeWave2, 349, 543
MDGetDimensionL abel, 352
MDGetDPDataFromNumericWave, 213, 359
MDGetNumericWavePointValue, 212, 357
MDGetTextWavePointValue, 363

example, 217
MDGetWaveDimensions, 216, 347
MDGetWaveScaling, 349, 542
MDGetWaveUnits, 351
MDI

child windows, 251, 252

destroying a window, 252

getting Igor client HWND, 473

getting window position, 431

menu bar, 246, 253

MOVE_TO_FULL_POSITION message, 119

RETRIEVE message, 120

setting window position, 255, 431

window coordinates, 432
MDMakeWave, 346

example, 210

text wave example, 140
MDSetDimensionL abel, 353
MDSetNumericWavePointValue, 212, 358
MDSetTextWavePointValue, 364

example, 218
MDSetWaveScaling, 218, 350

example, 210
MDSetWaveUnits, 218, 352
MDStoreDPDatalnNumericWave, 213, 360
MemClear, 491
MemError, 501
memory

checking allocations, 311

dangling pointers, 312

data sharing, 139

DisposeHandle, 499

DisposePtr, 498

disposing, 309, 311

GetHandleSize, 499

GetPtrSize, 497

HandAndHand, 499

handles, 262, 261-65

HandToHand, 498

heap, 262

Index

heap scramble, 312
HGetState, 500
HLock, 500
HSetState, 500
HUnlock, 500
leaks, 310
Macintosh emulation, 139, 261
Macintosh memory management, 26165
MemError, 501
MoveHHi, 501
NewHandle, 498
NewPtr, 497
pointers, 262
PtrAndHand, 501
PtrToHand, 501
relocatable block, 263, 264
SetHandleSize, 499
SetPtrSize, 498
using unallocated blocks, 308
memory leaks
new operator, 101
memory management routines, 497-501
IGOR.lib, 497
menu bars, 246
menu handles, 240
menu IDs, 238, 23940
conflicts, 245
ranges, 245
menu management routines, 5024
menu manager routines, 232
MENU resources
for popup menus, 275
MENUENABLE message, 113, 242, 250
MenuHandles, 232
MENUHELP resources
status line help, 297
MENUITEM message, 113, 239
error codes, 127
on Windows, 253
recursion, 137
menus
Actua ToResourceltem, 241, 394
Actua ToResourceMenul D, 240, 393
adding, 23146
adding a main menu, 235
adding a main menu item, 234-38
appendmenu, 502
balloon help, 296
Checkltem, 504
CountMItems, 502
DeleteMenultem, 502
dialog popup menus, 245, 275
Disableltem, 503

disabling, 24244

DisposeMenu, 245

Enableltem, 503

enabling, 242-44

enabling for XOP window, 250
enabling Igor items, 243
FillMenu, 394

FillMenuNoMeta, 395
FillPathMenu, 396
FillWaveMenu, 395
FillWinMenu, 396

Find item, 243, 392

GetMenu, 245

getmenuitemtext, 503

getting menu handles, 240
insertmenuitem, 502

limitations, 234

menu bars, 246

menu ID conflicts, 245

menu ID ranges, 245

menu 1Ds, 238, 239-40

menu manager routines, 232
MENUENABLE message, 113
MenuHandles, 232

MENUITEM message, 113, 239
MenuXOP1 sample XOP, 18, 231, 234
newmenu, 245

popup menus, 277

ReleaseMenu, 245

resource IDs, 238

ResourceM enulDToMenuHandle, 240, 394
resources, 234-38
ResourceToActualltem, 241, 393
ResourceToActualMenul D, 240, 393
responding to, 23941
SetlgorMenultem, 392
setmenuitemtext, 503
SHOW_MENU_AT_LAUNCH, 235
SHOW_MENU_WHEN_ACTIVE, 235
status line help, 297-99

STR# 1101 resource, 236
TUFixEditMenu, 441
TUFixFileMenu, 441

Undo item, 392
WM_COMMAND message, 239
WM_INITMENU message, 242
WM DeleteMenultems, 394
XMI1 1100 resource, 234, 236
XMNL1 1100 resource, 234, 235
X OPSupport routines, 392-97
XSM1 1100 resource, 234, 237

MenuXOP1 sample XOP, 18
MenuXOP1 XOP, 231, 234

557

Index

message boxes. (see alerts) SAVEFILE message, 122
message method for external functions, 201-2 SAVESETTINGS message, 125, 133
messages saving and loading settings, 124-26
ACTIVATE message, 116 SELECT_ALL message, 122
basic, 112-14 SET_TARGET_WINDOW_NAME message, 123
between Igor and XOP, 136 SET_TARGET_WINDOW_TITLE message, 123
CLEANUP message, 113 SETGROW message, 117
CLEAR message, 121 UNDO message, 121
CLEAR_MODIFIED message, 124 UPDATE message, 116, 250
CLICK message, 118 WINDOW_MOVED message, 118
CLOSE message, 117 XOPEnNtry routine, 21
CMD message, 115 meta-characters, 395, 396
COPY message, 121 FillMenu, 394
CUT message, 120 FillMenuNoMeta, 395
DISPLAY SELECTION message, 122 MetroNub, 73, 78
DUPLICATE message, 122 Metrowerks. (see CodeWarrior)
EXPORT_GRAPHICS message, 122 MFC, 89
FIND message, 121, 243 Microsoft, 5
for XOPs with windows, 116-23 miscellaneous routines, 476-90
from Igor to XOP, 20 mnemonic names, 158
FUNCADDRS message, 114, 201 modification count
FUNCTION message, 115 waves, 340
GET_TARGET_WINDOW_NAME message, 123 modification date
GET_TARGET_WINDOW_REF message, 123 waves, 339
GROW message, 116 modification state
IDLE message, 112 waves, 340
INDENTLEFT message, 121 MODIFIED message, 124
INDENTRIGHT message, 121 Motorola, 4
INIT message, 22, 112 movableDBoxProc, 532
INSERTFILE message, 122 MOVE_TO_FULL_POSITION message, 119
KEY message, 118 MOVE_TO_PREFERRED_POSITION message, 119
LOAD message, 124, 132 MoveDataFolder, 383
LOADSETTINGS message, 126, 133 MoveDataFolderObject, 390
MENUENABLE message, 113, 250 MoveHHi, 315, 501
MENUITEM message, 113, 239 Movel ockHandle, 262, 264, 317, 495
MODIFIED message, 124 MPW, 4
MOVE_TO_FULL_POSITION message, 119 Multiple Document Interface. (see MDI)
MOVE_TO_PREFERRED_POSITION message, 119 MW_MASK, 489
NEW message, 124, 132
NULLEVENT message, 118, 250
OBJINUSE message, 114 N

PAGESETUP message, 122

PASTE message, 121 name parameters .

PRINT message, 122 external operations, 163
recursion, 138 NamedFIFO.h, 448

REPLACE message, 121 names

RETRIEVE message, 120 CatPossiblyQuotedName, 460
REVERT_WINDOW message, 123 CheckName, 457

SAVE message, 124, 132 cl eanupNgme, 457_
SAVE_WINDOW message, 123 CreateValidDataObjectName, 458
SAVE_WINDOW_AS message, 123 GetWaveName, 335
SAVE_WINDOW_COPY message, 123 liberal, 335, 457, 458, 460
SAVE_WINDOW_MACRO message, 123 of external functions, 186

558

Index

of external operations, 150
of XOPs, 7
PossiblyQuoteName, 460
SanitizeWaveName, 456
UnigueName, 455
UnigueName2, 455
WaveName, 343
NaNs, 493
National Instruments
NIGPIB2 sample XOP, 19
native paths, 268
NEW message, 124, 132
new operator
in CodeWarrior, 101
NewDataFolder, 382
example, 227
NewHandle, 262, 498
example, 263
newmenu, 245
NEWMODE
new operator, 101
NewPtr, 262, 497
example, 263
NextSymb, 335
nibs, 109, 270
NIGPIB2 sample XOP, 19
NT_CMPLX, 189
in XOPF resource, 184
number type for waves, 211
NT_FP32, 337, 450
number type for waves, 211
NT_FP64, 337, 450
in XOPF resource, 184
number type for waves, 211
NT_116, 337, 450
number type for waves, 211
NT_132, 337, 450
number type for waves, 211
NT_18, 337, 450
number type for waves, 211
NT_UNSIGNED, 337, 450
number type for waves, 211
NULLEVENT message, 118, 250
not sent on Windows, 253
number type codes, 450, 452
number types
for waves, 211
GBLoadWave example, 18
NumBytesAndFormatToNumType, 453
numeric conversion
ConvertData, 451
ConvertData2, 452
FixByteOrder, 454

NumBytesAndFormatToNumType, 453
NumTypeToNumBytesAndFormat, 452
ScaleClipAndRoundData, 453
ScaleData, 453
numeric conversion routines, 450-54
GBLoadWave example, 18
numeric expressions
in operations, 146
numeric precision
in external functions, 188
NumTypeToNumBytesAndFormat, 452
NVAR, 165
NVARs
external operations, 177
GetNVAR, 374
in structure parameters, 282, 283
SetNVAR, 374

O

object name routines, 455-60

object types
WAVE_OBJECT, 114

objects
counting in data folders, 384
duplicating in data folders, 389
getting in data folders, 384, 385
killing in data folders, 389, 390
renaming in data folders, 391
setting in data folders, 387

OBJINUSE message, 114

OpenFileReadOnly, 528

operation categories, 149
compilableOp, 149
XOPOp, 149

Operation Handler, 15178
bug in Igor Pro 5.00 and 5.01, 541
introduced in Igor Pro 5, 5
RegisterOperation, 329
XOPSupport routines, 329

operation index, 115

operations. (see also external operations)
adding, 146-78
characteristics of, 3

optional parameters, 157, 162

output variables, 174

P

packaged bundles
extension, 7

559

Index

560

packages

rsrcfiles, 109

Xcode, 81, 85
Packages data folder, 227
PAGESETUP message, 122
PANEL_MASK, 489
parameter types

in external functions, 188

numeric precision, 188
parameters, 154

as keyword, 155

checking string parametersin external functions, 193

commas between parameters, 146
complex in external functions, 189
DataFolderAndName parameters, 166

disposing string parametersin external functions, 193

external functions, 187
FV_REF_TYPE, 199
in external functions, 181, 183
in operations, 146
name parameters, 163
optional, 157
optional parameters, 162
pass-by-reference, 198
pass-by-value, 198
runtime parameter structure, 159
string in external functions, 190, 191, 199
string parameters, 163
structures, 281
structures in external functions, 194, 195
structures in external operations, 168
type checking in external functions, 184
VarName parameters, 165
wave in externa functions, 204
wave parameters, 164
WaveRange parameters, 164
parent data folder, 381
ParseOperationTemplate, 152
parsing commands, 335
AtEndOfCommand, 335
CalcWaveRange, 335
Capitalize, 335
CheckTerm, 335
FileL oaderGetOperationFlags, 335
FileL oaderGetOperationFlags2, 335
GetAString, 335
GetAStringlnHandle, 335
GetDataFolder, 335
GetDataFolderAndName, 335
GetFlag, 335
GetFlagNum, 335
GetFormat, 335
GetFull PathFromSymbolicPathAndFilePath, 426

GetKeyword, 335
GetLong, 335
GetName, 335
GetNum, 335
GetNum2, 335
GetNumVarName, 335
GetPath, 335
GetStrVarName, 335
GetSymb, 335
GetTrueOrFalseFlag, 335
GetWave, 335
GetWavel.ist, 335
GetWaveName, 335
GetWaveRange, 335
|sStringExpression, 335
Keyword, 335
NextSymb, 335
pass-by-reference, 198
FV_REF _TYPE, 199
pass-by-value, 198
PASTE message, 121
path separator characters, 267
PathList, 480
PathNameFromDirlD, 416
PathNameFromDirWD, 416
paths. (see aso symbolic paths)
ConcatenatePaths, 414
escape characters, 268
FullPathPointsToFile, 415
FullPathPointsToFol der, 416
GetDirectoryAndFileNameFromFullPath, 415
GetFullMacPathToDirectory, 416
GetFull PathFromSymbolicPathAndFilePath, 426
GetlLeafName, 416
GetNativePath, 268, 413
HFSToPosixPath, 412
Mac/Win conversion, 268
MacToWinPath, 268, 411
native paths, 267, 268
POSIX paths, 267, 268
WinToMacPath, 268, 412
PauseUpdate, 478
PEF, 6
phone number for technical support, 26
PICT resources, 518
pitfalls, 320-22
Pkglnfofile
Xcode, 85
PL_MASK, 489
platform-independence, 6
platform-independent development. (see cross-platform
development)
plgndr

Index

example external function, 17, 182

point access method, 212

pointers, 262
dangling pointers, 312
heap scramble, 312
misconceptions, 307

PopMenu, 527

popup menus, 277
AddPopMenultems, 406
CreatePopMenu, 245, 275, 405
DeletePopMenultems, 407
enabling and disabling, 276
FillMenu, 394
FillMenuNoMeta, 395
FillPathMenu, 396
FillPathPopMenu, 409
FillPopMenu, 408
FillWaveMenu, 395
FillWavePopMenu, 408
FillWindowPopMenu, 409
FillWinMenu, 396
GetPopMenu, 275, 407
GetPopMenuHandle, 406
in Carbon, 532
in dialogs, 275
InitPopMenus, 275, 405
ItemlsPopMenu, 406
KillPopMenus, 275, 410
Macintosh, 275
SetPopltem, 407
SetPopMatch, 407
WMDeleteMenultems, 394

POSIX, 267, 268

POSIX paths
Xcode, 88

PossiblyQuoteName, 460

Power Macintosh, 4

PowerPC, 4

PPC, 4

preferences, 132
GetPrefsState, 490
GetX OPPrefsHandle, 490
SaveX OPPrefsHandle, 489
structures, 132

prefix characters, 155

prefix file, 76
CodeWarrior, 71

prefix files
Xcode, 83, 84

PRINT message, 122

problems, 26

procedures
CallFunction, 285

calling from an XOP, 285
CheckFunctionForm, 285, 469
DoWindowRecreationDial og, 466
GetFunctionlnfo, 285, 467, 471
GetFunctionlnfoFromFuncRef, 285, 468
GetlgorProcedure, 465
GetlgorProcedurel ist, 464
routines, 46472
SetlgorProcedure, 466

programming utilities, 491-96

project files, 15
CodeWarrior, 68
Visua C++ 6, 90
Visua C++7,95

project settings
CodeWarrior, 69
Visua C++ 6, 92
Visua C++ 7,97

projects
creating in CodeWarrior, 67, 75
creating in guided tour, 35
creating in Visua C++ 6, 90
creating in Visua C++ 7, 95
creating in Xcode, 80, 83
debug and release configurations, 91, 96

PtrAndHand, 501

PtrToHand, 501

PutCmdLine, 485

PutCstringlnHandle, 217, 220, 491

Q

QDPointer, 527

quotes
CatPossiblyQuoteName, 460
PossiblyQuoteName, 460

R

recompiling XOPs, 25

rectangles, 496

recursion, 137-38, 254
DoUpdate side-effect, 478
XOPCommand side-effect, 476
XOPCommand?2 side-effect, 476
XOPSilentCommand side-effect, 477

RegisterClass, 251

RegisterOperation, 147, 152, 329
example, 105

release configuration
Visua C++ 6,91

561

Index

562

Visual C++ 7, 96
ReleaseMenu, 245, 527
relocatable block of memory, 263, 264
RenameDataFolder, 383
RenameDataFol derObject, 391
REPLACE message, 121
REPLACEALLCMDS, 485
REPLACEALLCMDSCRHIT, 485
REPLACEFIRSTCMD, 485
ResEdit, 109
RESIDENT bit, 135

SetXOPType, 326
resident XOPs

definition of, 21

external functions, 201

XOPTypefield in IORec, 135
Resorcerer, 109
resourcefiles, 15

restrictions on, 288

Visual C++ 6, 91

Visua C++ 7, 96
resource includes, 109
resource XOPSupport routines, 447
resource.h file

creation of, 110

dialog resource | Ds, 269

menu resource | Ds, 235, 237
ResourceMenulDToMenuHandle, 240, 394
resources, 108-11

accessing in Carbon, 536

CNTL, 275

compatibility, 518

creating, 109

creating on Windows, 109

DITL resources, 269

digx, 270

DLOG resources, 269

for dialogs, 269

for menus, 234-38

GetIndString, 537

GetResource, 288, 536

GetX OPIndString, 447, 537

GetX OPNamedResource, 447

GetX OPResource, 447

guided tour, 53

hdlg resources, 295

hmnu resources, 295

HMNU resources, 297

in CFM XOPs, 109

in Mach-O XOPs, 109

initialization, 20

MENU, 275

MENUHELP resources, 297

popup menus, 275

resource.h file, 110, 235, 237, 269
restrictions on, 288
SimpleGaussFit, 53

status line help, 297

STR# 1100 resource, 108, 128, 130
STR# 1101 resource, 108, 236
STR# 1160 resource, 108

STR# for balloon help, 296
UseResFile, 288, 536

version resources, 278

XMI1 1100, 234, 236

XMI1 1100 resource, 108, 296, 297
XMNZ1 1100, 234, 235
XMN1 1100 resource, 108
XOPC 1100 resource, 108, 115, 148
XOPCloseResFile, 537

XOPF 1100 resource, 108, 115, 182, 183

XOPI 1100 resource, 108, 110

XOPOpenResFile, 537

XOPRefNum, 447

XOP-specific, 108

XOPTypes.r, 109

XOPUseResFile, 537

XPRF resources, 489, 490

XSM1 1100, 234, 237

XSM1 1100 resource, 108
ResourceToActualltem, 241, 393
ResourceToA ctualMenulD, 240, 393
responding to menu selections, 23941
result types

in external functions, 188
results

external functions, 187

string in external functions, 190, 191

ResumeUpdate, 478
RETRIEVE message, 120
REVERT_WINDOW message, 123
Rez

compiling .r files, 109
RGBColor, 462
root data folder, 379
routine descriptors

XOPDialog, 399
ROWS, 216, 336, 360
RS232

VDT2 sample XOP, 19
runtime library

Visua C++ 6, 92

Visua C++ 7,97
runtime parameter structure, 159

Index

S

S variables

in external operations, 174
S fileName, 428

SetFilel oaderOperationOutputVariables, 428
S path, 428

SetFilel oaderOperationOutputVariables, 428
S waveNames, 428

SetFilel oaderOperationOutputVariables, 428
sample XOPs, 15, 17-19
SanitizeWaveName, 456
SAVE message, 124, 132
SAVE_TYPE_xxx, 125
SAVE_WINDOW message, 123
SAVE_WINDOW_AS message, 123
SAVE_WINDOW_COPY message, 123
SAVE_WINDOW_MACRO message, 123
SAVEFILE message, 122
SAVESETTINGS message, 125, 133
SaveX OPPrefsHandle, 132, 489
saving settings, 133
ScaleClipAndRound, 543
ScaleClipAndRoundData, 453
ScaleData, 453
SELECT_ALL message, 122
SelEditltem, 403, 525
SelMacEditltem, 403
SendWinMessageTolgor, 253, 475
SendX OPA4Tolgor, 527
serial port

VDT2 sample XOP, 19
SET_TARGET_WINDOW_NAME message, 123
SET_TARGET_WINDOW_TITLE message, 123
SetCheckBox, 400
SetCurrentDatalFol der, 379
SetDataFol derObject, 387
SetDataFol derProperties, 377
SetDDouble, 403
SetDialogBalloonHelpl D, 399, 526
SetDialogPort, 398, 525
SetDInt, 402
SetDItemProc, 529
SetDLong, 402
SetDText, 401
SetFilel oaderOperationOutputVariables, 428
SetFilel oaderOutputVariables, 174, 428
SETGROW message, 117
SetHandleSize, 499

use with strings, 321
SetlgorComplexVar, 372
SetlgorFloatingVar, 372

example, 223
SetlgorintVar, 371
SetlgorMenultem, 243, 392
SetlgorProcedure, 466
SetlgorStringVar, 373
example, 223
setmenuitemtext, 503, 530
SetNaN32, 493
SetNaN64, 493
SetNVAR, 374
example, 283
SetOperationFilel oaderOutputVariables, 174
SetOperationNumVar, 330
SetOperationStrVar, 330
SetOperationWaveRef, 167, 333, 542
SetPopltem, 407
SetPopMatch, 407
SetPopMenu, 527
SetPtrSize, 498
SetRadBut, 400
SetStandardFilePath, 528
SetSVAR, 375
example, 283
SetTextWaveData, 218, 367, 542
settings
byte reordering, 134
GetPrefsState, 490
GetX OPPrefsHandle, 490
loading, 133
messages for, 124-26
SaveX OPPrefsHandle, 489
saving, 133
saving and loading, 133
structure alignment, 133
structures, 134
SetWaveDimensionLabels, 354, 542
SetWavel ock, 340
SetWaveNote, 343
SetWaveScaling, 341
history of, 219
SetWavesStates, 344
SetWaveUnits, 342
history of, 219
SetX OPENtry, 24, 326
example, 105
XOPEntry field in IORecHandle, 136
SetX OPltem, 530
SetX OPMessage, 327
SetX OPRefCon, 328
SetX OPResult, 127, 327
example, 105
result field in IORecHandle, 136
returning custom errors, 130

563

Index

SAVESETTINGS message, 133
SetX OPType, 326

IDLE message, 112

in external functions, 201

XOPTypefield in IORec, 135
SetX OPWindowlgorPositionAndState, 433
SetX OPWindowPositionAndState, 431
SetXOPWindowTitle, 431
shared library

CodeWarrior, 68
shortcuts, 20
SHOW_MENU_AT_LAUNCH, 235
SHOW_MENU_WHEN_ACTIVE, 235
ShowAndA ctivateX OPWindow, 430
ShowDia ogWindow, 398
ShutdownDialogSettings, 272
SIGNED_INT, 450
SimpleFit sample XOP, 18, 29
SimpleGaussFit

compiling, 58

resources, 53

testing, 60
SimpleGaussFit sample XOP, 29
Simplel oadWave sample XOP, 18
solution files, 95
SoundInput XOP, 448
SpinCursor, 434
SpinProcess, 484

recursion, 137
SS MASK, 489
stack

overwriting, 305
starter code, 152

bug in Igor Pro 5.00 and 5.01, 541

details, 175

updating, 176
statusline

X OPSetContextual HelpM essage, 488
status line help

for menus, 297-99
StdGetFile, 528
StdPutFile, 528
StoreNumericDataUsingVarName, 165, 332
StoreNumericValue, 362
StoreNumVar, 369
StoreStringDataUsingVarName, 165, 333
StoreStrVar, 370
STR# 1100 resource, 108, 128, 130
STR# 1101 resource, 108, 236, 530

XOP help file name, 293
STR# 1160 resource, 108
STR# resource

status line help, 297

STR# resources for balloon help, 296
STR_OBJECT, 376-91
CheckName, 457
CreateValidDataObjectName, 458
strchr2, 492
String
in structure parameters, 282
string expressions
in operations, 146
string parameters
external operations, 163
string variables
accessing, 368-75
content stored in handles, 220
FetchStrHandle, 370
FetchStrVar, 370
GetSVAR, 375

SetFilel oaderOperationOutputVariables, 428

SetlgorStringVar, 373
SetOperationStrVar, 330
SetSVAR, 375
StoreStringDataUsingVarName, 333
StoreStrVar, 370
StringL.ist, 482
Variable, 368
VarNameToDataType, 331

StringList, 482

strings
disposing, 163
GetCStringFromHandle, 217, 220
GetHandleSize, 321
in handles, 321
inlgor, 193, 220
in structure parameters, 283
|sStringExpression, 335
pitfalls, 321
PutCstringlnHandle, 217, 220
SetHandleSize, 321

strrchr2, 492

structure alignment, 160
changing for XOP Toolkit 5, 515
in CodeWarrior, 280
in external functions, 187
settings structures, 133

structure parameters, 281
CheckFunctionForm, 469
examplein external function, 196
examplein external operation, 169
extended, 172

extended example in external operation, 173

fields, 282
in external functions, 194
in external operations, 168

Index

NVARs, 283
strings, 283
SVARSs, 283
structures
expandable, 132, 134
GetNVAR, 374
GetSVAR, 375
in XOPF resource, 184
SetNVAR, 374
SetSVAR, 375
versioning, 171, 198
Xcode, 88
subclassing, 254
submenus
XSM1 1100 resource, 237
SVAR, 165
SVARs
GetSVAR, 375
in structure parameters, 282, 283
SetSVAR, 375
symbolic debugging, 318
symbolic paths
FileL oaderGetOperationFlags2, 335
FillPathMenu, 396
FillPathPopMenu, 409
GetFull PathFromSymbolicPathAndFilePath, 426
GetPathinfo2, 481
PathList, 480

T

target settings
CodeWarrior, 69
target windows
adding, 257
TARGET_RT_MAC_MACHO, 43
CodeWarrior, 77
Xcode, 84
Task Manager
leaks, 310
technical support, 26
email, 26
FTP, 26
mailing list, 26
phone number, 26
template, 152
templates, 155
access waves, 214
for operations and functions, 292
length limit, 175
mnemonic names, 158
temporary storage access method, 213

text utility routines, 435-46

TUDemo sample XOP, 19

text waves

accessing text data, 217-18, 542
example, 140

faster access, 218
GetTextWaveData, 365
MDGetTextWavePointValue, 363
MDSetTextWavePointVaue, 364
SetTextWaveData, 367

text wave type, 211

text windows

TUACctivate, 437
TUClear, 439

TUClick, 439

TUCopy, 438

TUCut, 438

TUDelete, 444

TUDemo sample XOP, 19
TUDisplaySelection, 436
TUDispose, 436
TUDrawWindow, 442
TUFetchParagraphText, 444
TUFetchSelectedText, 445
TUFind, 440
TUFixEditMenu, 441
TUFixFileMenu, 441
TUGetDoclnfo, 442
TUGetSelLocs, 443
TUGrow, 436

TUldle, 437
TUIndentLeft, 440
TUIndentRight, 440
TUInsert, 443
TUInsertFile, 444
TUKey, 440

TULines, 442
TUMoveToFull SizePosition, 438
TUMoveToPreferredPosition, 437
TUNew, 435

TUNew2, 435

TUNull, 438
TUPageSetupDialog, 439
TUPaste, 439

TUPrint, 439

TUReplace, 440
TURetrieveWindow, 438
TUSelectAll, 440
TUSetSelL ocs, 443
TUSetStatusArea, 446
TUSFInsertFile, 441
TUSFWriteFile, 441
TUUndo, 439

565

Index

TUUpdate, 437 TUInsertFile, 444

TUWriteFile, 444 TUKey, 440
TEXT_WAVE_TYPE, 337 TULines, 442

type for waves, 211 TULoc structure, 443
THINK C, 4 TUMoveToFullSizePosition, 438
threading TUMoveToPreferredPosition, 437

Visual C++ 6, 92 TUNew, 254, 435

Visual C++ 7, 97 TUNew?2, 254, 435
TickCount, 504 TUNuII, 438
To Clip button, 277 TUPageSetupDialog, 439
To Cmd button, 277 TUPaste, 439
TOCLIPID, 404 TUPrint, 439
TOCMDID, 404 TUReplace, 440
ToggleCheckBox, 400 TURetrieveWindow, 438
TransformwWindowCoordinates, 432 TUSelectAll, 440
TRANSIENT bit, 135 TUSetSelL ocs, 443

SetXOPType, 326 TUSetStatusArea, 446
transient XOPs TUSFInsertFile, 441

definition of, 21 TUSFWriteFile, 441

new operator, 101 TUUndo, 439

with windows, 252 TUUpdate, 437

XOPTypefield in IORec, 135 TUWriteFile, 444
troubleshooting, 26 types of XOPs, 21
try

in C++, 100
TU windows, 254 U

subclassing, 254

TUDispose, 254 undo

TUNew, 254 menu item, 392

TUNew2, 254 TUUndo, 439

window procedure, 254 UNDO message, 121
TUACtiVaIe, 437 uninitialized Varlables, 304
TUClear, 439 UnigueName, 455
TUC“Ck, 439 UniqueNameZ, 455
TUCOpy, 438 units, 342
TUCUt, 438 for waves, 218
TUDe ete, 444 MDGetWaveUnlts, 351
TUDisplaySelection, 436 Unix paths
TUDispose, 254, 436 Xcode, 88
TUDrawWindow, 442 unlocking handles, 316
TUFetchParagraphText, 444 UNSIGNED _INT, 450
TUFetchSelectedText, 445 update
TUFind, 440 DoUpdate, 478
TUFixFileMenu, 441 XOPCommand2 side-effect, 476
TUGetDoclnfo, 442 XOPSilentCommand side-effect, 477
TUGetSelLocs, 443 UPDATE
TUGrow, 436 recursion, 138
TUIndentL eft, 440 not sent on Windows, 253
TUIndentRight, 440 recursion, 137
TUInsert, 443 updates for XOP Toolkit, 8, 65

566

Index

user functions
versus external functions, 181
user-defined functions
calling from an XOP, 285
UseResFile, 288, 536
Userltem controls, 533, 534
utilities, 491-96
utility routines, 16
CmpsStr, 492
DateTolgorDatel nSeconds, 494
GetCStringFromHandle, 491
IgorDatel nSecondsToDate, 494
IgorVersion, 486
IsSINF32, 493
IsINF64, 493
IsMacOSX, 488
IsNaN32, 493
IsNaN64, 493
MacRectToWinRect, 496
MemClear, 491
Movel ockHandle, 495
PutCStringlnHandle, 491
SetNaN32, 493
SetNaN64, 493
strchr2, 492
strrchr2, 492
Winlinfo, 489
WinRectToMacRect, 496
XOPBeep, 495
XOPOKAIert, 495
XOPOKCancelAlert, 495
XOPY esNoAlert, 495
XOPY esNoCancelAlert, 496

V

V_ variables
in external operations, 174
V_flag, 428
V_Flag
SetFilel oaderOperationOutputVariables, 428
VAR_GLOBAL, 368
VAR_OBJECT, 376-91
CheckName, 457
CreateValidDataObjectName, 458
Variable, 368
in structure parameters, 282
VariableList, 481
variables
accessing, 368-75
accessing datain, 220-23
commonly used X OPSupport routines, 221

datafolders, 368
example making, 223
FetchNumVar, 369
FetchStrHandle, 370
FetchStrvar, 370
GetNumVarName, 335
GetNVAR, 374
GetStrVarName, 335
GetSVAR, 375
local versus global, 368
making global, 223
precision of, 368
SetFilel oaderOperationOutputV ariables, 428
SetlgorComplexVar, 372
SetlgorFloatingVar, 372
SetlgorintVar, 371
SetlgorStringVar, 373
SetNVAR, 374
SetOperationNumVar, 330
SetOperationStrVar, 330
SetSVAR, 375
setting in external operations, 330, 331, 332, 333, 428
StoreNumericDataUsingVarName, 332
StoreNumVar, 369
StoreStringDataUsingVarName, 333
StoreStrVar, 370
StringList, 482
uninitialized, 304
VAR_GLOBAL, 368
Variable, 368
VariableList, 481
VarNameToDataType, 331
VarName parameters
external operations, 165
VarNameToDataType, 331
VDT2 sample XOP, 19
version
of Igor, 140
version resources, 278
versions, 14042
compatibility, 6
IgorVersion, 486
of Igor, 4, 5, 6, 26, 147
of structures, 171, 198
XOP Toolkit 5 Upgrade, 507
Visua C++
C++, 102
first XOP support, 5
resources, 109
structure alignment, 280
supported versions, 6, 8, 65
worksheet files, 15
XOPSupport project files, 13

567

Index

Visual C++ .NET, 94-98
Visua C++ 6, 90-93
.dsp files, 90
.dsw files, 90
rcfiles, 91
building SimpleFit, 32
configurations, 91
creating a new project, 90
creating project in guided tour, 45
debug configuration, 91
debugging, 93
project files, 90
project settings, 92
release configuration, 91
resourcefiles, 91
runtime library, 92
testing installation, 12
threading, 92
workspace files, 90
Visua C++7,94-98
.NET, 94
rcfiles, 96
.Sin files, 95
.veproj files, 95
building SimpleFit, 33
configurations, 96
creating a new project, 95
creating project in guided tour, 49
debug configuration, 96
debugging, 98
LNK4204, 98
project files, 95
project settings, 97
release configuration, 96
resource files, 96
runtime library, 97
solution files, 95
testing installation, 12
threading, 97
warnings, 98
volume reference numbers, 267

W

warnings

Visua C++ 7, 98
WatchCursor, 434
wave assignment statements, 186
wave parameters

external operations, 164
WAVE references, 166

in external operations, 333

568

in structure parameters, 282
SetOperationWaveRef, 167, 542
WAVE_OBJECT, 376-91
CheckName, 457
CreateValidDataObjectName, 458
WAVE_OBJECT object type, 114
WAVE_TYPE, 188
curve fitting, 189
in XOPF resource, 184
WaveA ccess sample XOP, 19, 215
WaveData, 343
C++,99
example, 210
WaveHandleModified, 345
WaveHandlesModified, 345
Wavel ist, 479
Wavel ock, 340
WaveModCount, 340
WaveModDate, 339
WaveModified, 345
WaveModState, 340
WaveName, 343
WaveNote, 342
WavePoints, 339
WaveRange parameters
external operations, 164
waves
accessing, 33665
accessing datain, 207-19
accessing numeric data, 212-16
accessing text data, 217-18, 542
accessing with C++ templates, 214
CalcWaveRange, 335
ChangeWave, 338
commonly used X OPSupport routines, 207
datafolders, 381
data scaling, 218
dimension scaling, 218
direct access method, 214
example making, 210
FetchNumericValue, 362
FetchWave, 338
FetchWaveFromDataFol der, 339
FileLoaderMakeWave, 427
FillwaveMenu, 395
FillWavePopMenu, 408
GetTextWaveData, 365
GetWave, 335
GetWaveDimensionLabels, 353
GetWavel.ist, 335
GetWaveName, 335
GetWaveRange, 335
GetWaveslnfo, 344

Index

KillWave, 338

lock state, 340

MakeWave, 337

MDA ccessNumericWaveData, 355
MDChangeWave, 348
MDChangeWave2, 349, 543
MDGetDimensionLabel, 352
MDGetDPDataFromNumericWave, 359
MDGetNumericWavePointValue, 357
MDGetTextWavePointValue, 363
MDGetWaveDimensions, 347
MDGetWaveScaling, 349
MDGetWaveUnits, 351
MDMakeWave, 346
MDSetDimensionL abel, 353

M D SetNumericWavePointValue, 358
MDSetTextWavePointValue, 364
MDSetWaveScaling, 350
MDSetWaveUnits, 352
MDStoreDPDatal nNNumericWave, 360
number types, 211

OBJINUSE message, 114
organization of numeric data, 216
point access method, 212

ranges of, 164

SanitizeWaveName, 456

SetFilel oaderOutputVariables, 428
SetOperationWaveRef, 333, 542
SetTextWaveData, 367
SetWaveDimensionL abels, 354
SetWavel ock, 340

SetWaveNote, 343

SetWaveScaling, 341
SetWavesStates, 344

SetWaveUnits, 342

speed of accessing numeric data, 215
StoreNumericValue, 362

temporary storage access method, 213
text wave example, 140

text wave type, 211

units, 218

WaveA ccess example, 19
WaveData, 343
WaveHandleModified, 345
WaveHandlesModified, 345
Wavel.ist, 479

Wavel ock, 340

WaveModCount, 340
WaveModDate, 339

WaveModified, 345

WaveModState, 340

WaveName, 343

WaveNote, 342

WavePoints, 339
WaveScaling, 341
WaveType, 339
WaveUnits, 342
XOPWaveAccess.c, 13
WaveScaling, 341
history of, 219
WaveType, 339
WaveUnits, 342
history of, 219
wectb resources, 518
WIND resources, 518
window procedures, 252
for TU windows, 254
WINDOW_MOVED message, 118
not sent on Windows, 253
WindowPtr, 116
XOP_WINDOW_REFs, 249
windows
activating, 116
adding, 249-58
adding on Macintosh, 250
adding on Windows, 251
ArrowCursor, 434
captions, 431
clearing, 121
click events, 118
close type code, 117
closing, 117
content region, 255, 256
coordinates, 255
copying, 121
CreateWindowEx, 251
CreateX OPWindow, 252
CreateX OPWindowClass, 252
creating on Macintosh, 250
cursors, 118
cutting, 120
destroying an MDI window, 252
DestroyX OPWindow, 252
disposing on Macintosh, 250
DUPLICATE message, 122
EXPORT_GRAPHICS message, 122
FillWindowPopMenu, 409
FillWinMenu, 396
finding, 121
GET_TARGET_WINDOW_NAME message, 123
GET_TARGET_WINDOW_REF message, 123
GetActiveWindowRef, 430
getting Igor client HWND, 473
GetX OPWindow, 430
GetX OPWindowlgorPositionAndState, 433
GetX OPWindowPositionAndState, 431

569

Index

570

HandCursor, 434

help, 300

HideAndDeactivateX OPWindow, 431
|BeamCursor, 434

Igor window coordinates, 255
indenting, 121

inserting filesin, 122
1sXOPWindowActive, 430

key events, 118

MDI child window menu bar, 253

MDI child windows, 251, 252

MDI window coordinates, 432

MDI window position, 255, 431
messages, 24

messages for, 116-23

move to full position message, 119
move to preferred position message, 119
moved message, 118

null events, 118

page setup, 122

pasting, 121

printing, 122

recursion problems, 254

RegisterClass, 251

replacing, 121

resizing, 116, 117, 436

retrieve message, 120
REVERT_WINDOW message, 123
SAVE_WINDOW message, 123
SAVE_WINDOW_MACRO message, 123
saving files from, 122

SELECT_ALL message, 122
SendWinMessageTolgor, 253, 475
SET_TARGET_WINDOW_NAME message, 123
SET_TARGET_WINDOW_TITLE message, 123
SetX OPWindowlgorPositionAndState, 433
SetX OPWindowPositionAndState, 431
SetX OPWindowTitle, 431

ShowAndA ctivateX OPWindow, 430
SpinCursor, 434

support routines, 430-34

target windows, 257

text, 43546
TransformWindowCoordinates, 432
transient XOPs, 252

TU windows, 254

TUNew, 254

TUNew?2, 254

undoing, 121

updating, 116

WatchCursor, 434

window procedures, 252

windowKind field, 250, 430

WindowXOP1 sample XOP, 17
WinList, 480
XOP_WINDOW_REF, 116
X OPSetContextual HelpM essage, 488
XOPWindowProc, 252
zooming, 116, 436
Windows OS
IgorClientHWND, 473
IgorModule, 473
SendWinMessageTolgor, 475
WindowsErrorTolgorError, 474
WM GetlL astError, 473
XOPModule, 473
Windows OS error codes, 128-30
Windows platform
compatibility with Igor Pro 5, 5
first Igor release, 5
requiresgor Pro 4, 6
support routines, 473-75
supported OS versions, 6
XOP Toolkit 5 requirements, 6
WindowsErrorTolgorError, 128-30, 474
WindowXOP1 sample XOP, 17
WindowXOP1 XOP
balloon help example, 296
WinHelp, 300
Wininfo, 489
WinList, 480
WinRectToMacRect, 496
WinToMacPath, 268, 412
WM_ACTIVATE message, 251
WM_CHAR message, 251, 253
in TU windows, 254
WM_COMMAND message, 239, 251, 253
WM_CONTEXTMENU, 300
WM_DESTROY message, 252
WM_INITMENU message, 242, 251
WM_KEY message, 251, 253
WM_LBUTTONDOWN message, 253
WM_MDIACTIVATE message, 253
in TU windows, 254
WM_MDIDESTROY message, 252
WM_MOVE message, 253
WM_PAINT message, 251, 253
in TU windows, 254
recursion, 137
WM_RBUTTONDOWN message, 253
WM_SIZE message, 253
WM DeleteM enultems, 394
WM GetlL astError, 128-30, 473
working directory refNums, 267
worksheet files, 15
workspace files, 90

Index

World-Wide Web, 26

X

X scaling, 341
MDGetWaveScaling, 349
MDSetWaveScaling, 350
x86, 5
Xcode, 79-89
.expfiles, 81, 84
balloon help, 88
building SimpleFit, 31
bundles, 82
C++, 84, 102
command help, 34
creating a new project, 80, 83
creating project in guided tour, 41
debugging, 86
DEV_SYS_CODE, 84
Exports.exp file, 43
fopen function, 88
frameworks, 83
help files, 88
icon, 85
IGRO XOP file creator, 84
info.plist, 83
IXOP XOP filetype, 44, 84
LaunchCFMApp, 83, 86
Mach-O, 80, 83
main function, 84, 102
packages, 81, 85
Pkglnfofile, 85
POSIX paths, 88
prefix files, 83, 84
structures, 88
supported versions, 8, 65
TARGET_RT_MAC_MACHO, 43, 84
testing installation, 11
Unix paths, 88
versus CodeWarrior, 6
XOPSupport project files, 13
XFUNC1 sample XOP, 17
XFUNC1 XOP
description, 182
direct functions, 202
XOPF 1100 resource example, 183
XFUNC1Add
example external function, 182
XFUNC1ComplexConjugate
example external function, 182, 189
XFUNC1Div
example external function, 182

invoking, 186

parameter types, 188

parameters and result, 187
XFUNC2 sample XOP, 17
XFUNC2 XOP

description, 182

direct functions, 202

XOPF 1100 resource, 188
XFUNC3 sample XOP, 17
XFUNC3 XOP

description, 182

XOPF 1100 resource, 190
XFUNC:Ss. (see external functions)
XMI1 1100 resource, 108, 234, 236

adding balloon help, 296

itemFlagsfield, 242

status line help, 297
XMN1 1100 resource, 108, 234, 235
XOP errors, 128
XOPfiles, 20
XOP protocol, 20-21

compatibility, 140

GetXOPItem, 328

GetX OPMessage, 327

GetX OPRefCon, 328

GetX OPResult, 327

GetX OPStatus, 328

SetX OPEntry, 326

SetX OPMessage, 327

SetX OPRefCon, 328

SetX OPResult, 327

SetX OPType, 326

version, 111

XOPInit, 326
XOP protocol version, 141
XOP resources, 108-11
XOP Toolkit

Carbon, 521

installing, 10

new features, 509

new X OPSupport routines, 516

overview, 13-16

Release 5.00, 541

Release 5.03, 541

Release 5.04, 542

sample XOPs, 15

updates, 8, 65

version, 111

version 5,5

version 5 upgrade, 507
XOP Toolkit number type codes, 450, 452, 453
XOP.h, 13
XOP_DIALOG_REF

571

Index

diaogs, 270
XOP_GLOBALS ARE_A4 BASED, 524
XOP_SET_STRUCT_PACKING, 515
XOP_TOOLKIT_VERSION, 111
XOP_VERSION, 111, 141
XOP_WINDOW_REF, 116
XOP_WINDOW_REFs, 249
XOP1 sample XOP, 17
XOPAtEndOfFile, 420
XOPBeep, 495
XOPC 1100 resource, 105, 108, 115, 148
XOPCloseFile, 418
XOPCloseResFile, 528, 537
XOPCommand, 476

recursion, 137, 138
XOPCommand2, 476
XOPCreateFile, 417
XOPDeleteFile, 417
XOPDialog, 399, 529
XOPDisplayHelpTopic, 300, 486
XOPEntry, 20, 24, 107, 112, 136

FUNCTION message, 201

messages, 21, 22
XOPF 1100 resource, 108, 115, 201

complex parameters, 189

defined, 183

inspected by Igor Pro, 182

string parameters, 190

XFUNC2 XOP example, 188
X OPGetFilePosition, 420
XOPI

changing for XOP Toolkit 5, 508
XOPI 1100 resource, 105, 108, 110

XOP protocol version, 141
XOPInit, 24, 326

example, 105

XOPRecHandle global, 135
XOPINITING status bit

MENUITEM message, 241
XOPModule, 473
XOPNotice, 478

for debugging, 319

pitfalls, 320
XOPNumberOfByteslnFile, 420
XOPOKAIlert, 131, 495

XOPOKCancelAlert, 131, 495
XOPOp operation category, 149
XOPOpenFile, 417
XOPOpenFileDialog, 269, 421, 526, 542
XOPOpenResFile, 528, 537
XOPReadFile, 418
XOPReadFile2, 418
XOPReadLine, 419
XOPRecHandle global, 135
XOPRefNum, 447
XOPResNotice, 479
XOPs. (see externa operations)

name conventions, 7
XOPS 1100 resource, 133
XOPSaveFileDialog, 269, 423, 526, 542
X OPSetContextual HelpM essage, 488, 530
X OPSetFilePosition, 420
XOPSilentCommand, 477

recursion, 137, 138
XOPStandardHeaders.h, 13
XOPStructureAlignmentTwoByte.h, 160
XOPSupport

callbacks, 16, 21

LNK4204 warnings, 98

new routines, 516

utility routines, 16

XOPSupport folder, 16
XOPSupport folder, 13, 16
XOPSupport project files, 13
XOPSupport.c, 13
XOPSupport.h, 13
XOPTypes.r, 109
XOPUseResFile, 528, 537
XOPWaveAccess.c, 13
XOPWindowProc, 252
XOPWriteFile, 419
XOPY esNoAlert, 131, 495
XOPY esNoCancelAlert, 131, 496
XPRF resources, 489, 490
XSM1 1100 resource, 108, 234, 237
xstrcat

example external function, 182, 191

XOPF 1100 resource, 190
xstrcatO external function, 17
xstrcatl external function, 17

	Copyright
	Warranty
	Updates
	Notice
	Table of Contents
	Introduction to XOPs
	About This Manual
	What is an XOP?
	Who Can Write an XOP?
	A Brief History of Igor
	XOP Toolkit 5
	Macintosh and Windows XOPs
	Macintosh CFM Versus Mach-O
	XOP Name Conventions
	Development Systems
	The Igor Extensions Folder On Macintosh
	Installing the XOP Toolkit
	Testing the Macintosh Installation
	Testing the Windows Installation

	XOP Toolkit Overview
	The XOPSupport Folder
	Sample XOP Folders

	XOPSupport
	The Sample XOPs
	XOP1
	XFUNC1
	XFUNC2
	XFUNC3
	WindowXOP1
	MenuXOP1
	SimpleLoadWave
	GBLoadWave
	SimpleFit
	WaveAccess
	TUDemo
	VDT2 (“Very Dumb Terminal”)
	NIGPIB2

	How Igor Integrates XOPs
	The Basic Structure of an XOP
	Preparing to Write an XOP
	Technical Support
	Email Support
	FTP Support
	Igor Mailing List
	World-Wide Web
	Telephone Support

	Guided Tour
	Overview
	What We Will Do
	Installation
	Building SimpleFit
	Creating a New Project
	Creating the New Project In CodeWarrior
	Creating the New Project In Xcode
	Creating the New Project In Visual C++ 6
	Creating the New Project In Visual C++ 7 (.NET)

	Changing the Resources
	Changing the Resources in CodeWarrior
	Changing the Resources in Xcode
	Changing the Resources in Visual C++ 6
	Changing the Resources in Visual C++ 7

	Changing the Help
	Changing and Compiling the Code
	Testing SimpleGaussFit
	Where To Go From Here

	Development Systems
	Overview
	XOPs in CodeWarrior Pro
	CFM XOP Projects in CodeWarrior Pro 8
	Target Settings
	Access Paths
	Runtime Settings
	PPC Target
	C/C++ Language
	PPC Processor
	Global Optimizations
	PPC Linker

	Debugging a CodeWarrior CFM XOP
	Mach-O XOP Projects in CodeWarrior Pro 8
	Debugging a CodeWarrior Mach-O XOP
	XOPs in Xcode
	XOP Projects in Xcode
	Xcode Project Settings
	Xcode C++ Projects
	Xcode XOP Package
	Debugging an Xcode XOP
	Other Xcode Notes
	fopen Function
	Help Files
	Balloon Help
	Structures Defined in Parameter Lists

	XOPs in Visual C++ 6
	XOP Projects in Visual C++ 6
	Visual C++ 6 Project Settings
	Debugging a Visual C++ 6 XOP
	XOPs in Visual C++ 7 (.NET)
	XOP Projects in Visual C++ 7
	Visual C++ 7 Project Settings
	XOPSupport Warnings
	Debugging a Visual C++ 7 XOP
	Writing XOPs in C++
	Mixing C and C++ Code
	Code Changes For C++
	Using C++ Exceptions

	C++ XOPs in CodeWarrior Pro
	CodeWarrior CFM Project Settings
	Using the new Operator in CodeWarrior

	C++ XOPs in Xcode
	C++ XOPs in Visual C++ 6
	C++ XOPs in Visual C++ 7

	Igor/XOP Interactions
	Overview
	XOP Resources
	Creating Resources on Macintosh
	Creating Resources on Windows
	The XOPI 1100 Resource

	Basic XOP Messages
	Messages for Operations and Functions
	Messages for XOPs with Windows
	Messages for XOPs that Save and Load Settings
	XOP Errors
	Error Codes
	Igor Error Codes
	XOP Custom Error Codes
	Mac OS Error Codes
	Handling Windows OS Error Codes
	Adding Custom Errors
	Displaying Your Own Error Alert

	XOPs and Preferences
	XOPs and Experiments
	Saving and Loading XOP Settings

	The IORecHandle
	Resident and Transient XOPs
	Receiving IDLE Messages For Background Processing

	Messages, Arguments and Results
	Handling Recursion
	Data Sharing
	Igor/XOP Compatibility Issues
	Checking Igor’s Version
	XOP Protocol Version

	Adding Operations
	Overview
	Igor Pro 4 Compatibility
	The Sequence of Events

	The XOPC 1100 Resource
	Operation Categories

	Choose a Distinctive Operation Name
	Operation Handler
	Creating Starter Code
	Operation Parameters
	The Command Template
	Optional Parameters
	Mnemonic Names
	The Runtime Parameter Structure
	String Parameters
	Name Parameters
	Wave Parameters
	Wave Range Parameters
	VarName Parameters
	DataFolderAndName Parameters
	Structure Parameters
	External Operation Structure Parameter Example
	Extended Structure Parameters
	Extended Structure Parameter Example

	Runtime Output Variables
	Starter Code Details
	Updating Starter Code
	Supporting Old XOPs
	Operation Handler Checklist

	Adding Functions
	Overview
	External Function Examples
	Adding an External Function to Igor
	The XOPF 1100 Resource
	Function Categories

	Choose a Distinctive Function Name
	Invoking an External Function
	External Function Parameters and Results
	Parameter and Result Types
	Complex Parameters and Results
	Strings Parameters and Results
	Structure Parameters
	External Function Structure Parameter Example

	Pass-By-Reference Parameters
	Keep External Functions in Memory
	FUNCTION Message Versus Direct Methods
	Error Checking and Reporting

	Accessing Igor Data
	Overview
	Waves
	Routines for Accessing Waves
	Example
	Wave Data Types
	Accessing Numeric Wave Data
	Accessing Text Wave Data
	Wave Scaling and Units

	Numeric and String Variables
	Example

	Dealing With Data Folders
	Routines for Accessing Data Folders
	Data Folder Conventions

	Adding Menus and Menu Items
	Overview
	Menu Manager Routines
	MenuHandles
	Summary of Menu Manager Routines

	Adding Menus and Menu Items
	Adding a Main Menu
	Adding Menu Items to Igor Menus
	Adding Submenus
	Menu IDs Versus Resource IDs

	Responding to Menu Selections
	Determining Which Menu Was Chosen
	Getting Your Menu Handle
	Determining Which Menu Item Was Chosen
	Detecting the First Time Your Menu Item is Chosen

	Enabling and Disabling Menu Items
	Enabling and Disabling XOP Menu Items
	Enabling and Disabling Igor Menu Items

	Advanced XOP Menu Issues
	Avoiding Menu ID Conflicts
	Dialog Popup Menus
	Menu Bars in Windows

	Adding Windows
	Overview
	Adding a Simple Window on Macintosh
	Adding a Simple Window on Windows
	CreateXOPWindowClass
	CreateXOPWindow
	DestroyXOPWindow
	XOPWindowProc
	Menus in Windows XOP Windows

	TU ("Text Utility") Windows
	Recursion Problems
	Igor Window Coordinates
	Adding XOP Target Windows

	Other Programming Topics
	Macintosh Memory Management
	Pointers And Handles
	Using a Handle
	Accessing Igor Data Objects

	Techniques for Cross-Platform Development
	File I/O
	File Path Conversions

	Adding Dialogs
	Alerts and Message Boxes
	Open and Save File Dialogs
	Dialog Resource IDs
	Macintosh Dialogs
	Windows Dialogs
	Cross-Platform Dialogs
	Cross-Platform Dialog Popup Menus
	Creating an Igor-Style Dialog

	Adding Version Resources
	Macintosh Version Resources
	Windows Version Resources

	Structure Alignment
	Shared Structure Alignment
	File Structure Alignment

	Using Igor Structures as Parameters
	Structure Fields
	Strings In Structures
	NVARs and SVARs In Structures

	Calling User-Defined and External Functions
	Example of Calling a User-Defined or External Function

	Macintosh Programming Issues
	Don’t Initialize Macintosh Toolbox Managers
	Restrictions on Opening Resource Forks

	Providing Help
	Overview
	Igor Pro Help File
	Help for External Operations and Functions
	Macintosh Balloon Help
	Balloon Help For Macintosh XOP Menu Items
	Status Line Help For Windows XOP Menu Items
	Status Line Help For Items Added To Igor Menus
	Status Line Help For XOP Menus

	Context-Sensitive Help For Windows XOP Dialogs
	Help For XOP Dialogs and Windows

	Debugging
	Overview
	Programming Problems
	Excessive Use of Global Variables
	Uninitialized Variables
	Overwriting Arrays
	Off By One Errors
	Failure To Check Error Codes
	Misconceptions About Pointers
	Using Memory Blocks That You Have Not Allocated
	Using Memory Blocks That You Have Disposed
	Disposing Memory Blocks More Than Once
	Failure to Dispose Memory Blocks
	Disposing Memory Blocks That Don’t Belong to You
	Failure to Check Memory Allocations
	Dangling Pointer / Heap Scramble Problems

	Debugging Techniques
	Recompiling Your XOP
	Symbolic Debugging
	Debugging Using XOPNotice
	Using Macsbug on Mac OS 9
	Crash Logs

	Avoiding Common Pitfalls
	Check Your Project Setup
	Get the Message and Parameters from Igor
	Understand the Difference Between a String in a Handle and a
	Choose Distinctive Names
	Set the Menu ID for MENU Resources
	Watch Out for Recursion
	Structure Alignment

	XOPSupport Routines
	About XOPSupport Routines
	Routines for Communicating with Igor
	Operation Handler Routines
	Routines for Parsing Commands
	Routines for Accessing Waves
	Routines for Accessing Variables
	Routines for Accessing Data Folders
	Routines for XOPs with Menu Items
	Routines for XOPs that Have Dialogs
	Dialog Popup Menus

	Routines for XOPs that Access Files
	Routines for File-Loader XOPs
	Routines for XOPs with Windows
	Routines for XOPs with Text Windows
	Creating and Disposing Text Windows
	Responding to Text Window Messages
	Text Window Utility Routines

	Routines for Dealing with Resources
	Routines for XOPs That Use FIFOs
	Numeric Conversion Routines
	Routines for Dealing With Object Names
	Color Table Routines
	Routines for Dealing With Igor Procedures
	Windows-Specific Routines
	Miscellaneous Routines
	Programming Utilities
	Macintosh Emulation Routines
	Emulated Macintosh Memory Management Routines
	Emulated Menu Management Routines
	Miscellaneous Emulated Macintosh Routines

	XOP Toolkit 5 Upgrade Notes
	Overview
	Changes You Must Make
	Change Your XOPI Resource
	XOP Toolkit 5 New Features
	Reorganization Of XOP Toolkit Folders
	Reorganizing Your XOP Folders
	Reorganizing a CodeWarrior Pro 8 Project Folder
	Reorganizing a Visual C++ 6 Project Folder
	Reorganizing a Visual C++ 7 Project Folder

	Structure Alignment
	XOPSupport Additions
	Apple-Related Changes
	Apple Resource Definition Syntax
	LITTLE_ENDIAN Symbol
	DOUBLE and double

	Porting Macintosh XOPs to Carbon
	Overview
	XOP Toolkit 3.13 Release Notes, June 28, 2002
	Issues Relating To Carbon And Igor XOPs
	What You Need To Develop A Carbon XOP
	Porting An Existing Mac XOP To Carbon
	Changes To Existing XOPSupport Routines
	Obsolete XOP Messages
	Obsolete XOPSupport Globals
	Obsolete XOPSupport Routines
	New XOPSupport Routines
	Menu Items Added By STR# 1101
	Dialogs Under Carbon
	Moveable Dialog Box
	Default and Cancel Dialog Items
	Macintosh Dialogs With Popup Menus
	Other Controls In Dialogs

	Carbon API Versus Classic Mac API
	Accessing Resources
	Other Issues
	Changes That Affect Windows XOPs

	XOP Toolkit 5 Release History
	Overview
	Operation Starter Code Bug In Igor Pro 5.00 and 5.01
	Release 5.00, March 23, 2004
	Release 5.03, September 13, 2004
	Release 5.04

	Index
	.
	_
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

